
2D Computer Graphics

Diego Nehab
Summer 2020

IMPA

1

Resultants and implicitization

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures

• Amortized vs. random access
• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures
• Amortized vs. random access

• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures
• Amortized vs. random access
• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures
• Amortized vs. random access
• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures
• Amortized vs. random access
• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures
• Amortized vs. random access
• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Why we need resultants

Two types of renderers and their applications
• Traditional vs. vector textures
• Amortized vs. random access
• In both cases, parallelism is key

Amortized renderers need actual point of intersection

Random access only need to count them

Can count using implicit tests

For that, we will use resultants

2

Implicit vs. explicit

We say that a bivariate polynomial Γ(u, v) is the implicit form of a
parametric polynomial curve γ(t) =

(
x(t), y(t)

)
if

Γ(p) = 0 ⇐⇒ ∃t | p = γ(t)

Given expressions for x and y, how do we obtain an expression for Γ?

The condition p = (xp, yp) =
(
x(t), y(t)

)
= γ(t) can be rewritten asfp(t) = x(t)− xp = 0

gp(t) = y(t)− yp = 0

Polynomials fp and gp have a common root at t.

We need a bivariate polynomial Γ(p) that vanishes if and only if two
one-variable polynomials fp and yp have a common root.

3

Implicit vs. explicit

We say that a bivariate polynomial Γ(u, v) is the implicit form of a
parametric polynomial curve γ(t) =

(
x(t), y(t)

)
if

Γ(p) = 0 ⇐⇒ ∃t | p = γ(t)

Given expressions for x and y, how do we obtain an expression for Γ?

The condition p = (xp, yp) =
(
x(t), y(t)

)
= γ(t) can be rewritten asfp(t) = x(t)− xp = 0

gp(t) = y(t)− yp = 0

Polynomials fp and gp have a common root at t.

We need a bivariate polynomial Γ(p) that vanishes if and only if two
one-variable polynomials fp and yp have a common root.

3

Implicit vs. explicit

We say that a bivariate polynomial Γ(u, v) is the implicit form of a
parametric polynomial curve γ(t) =

(
x(t), y(t)

)
if

Γ(p) = 0 ⇐⇒ ∃t | p = γ(t)

Given expressions for x and y, how do we obtain an expression for Γ?

The condition p = (xp, yp) =
(
x(t), y(t)

)
= γ(t) can be rewritten asfp(t) = x(t)− xp = 0

gp(t) = y(t)− yp = 0

Polynomials fp and gp have a common root at t.

We need a bivariate polynomial Γ(p) that vanishes if and only if two
one-variable polynomials fp and yp have a common root.

3

Implicit vs. explicit

We say that a bivariate polynomial Γ(u, v) is the implicit form of a
parametric polynomial curve γ(t) =

(
x(t), y(t)

)
if

Γ(p) = 0 ⇐⇒ ∃t | p = γ(t)

Given expressions for x and y, how do we obtain an expression for Γ?

The condition p = (xp, yp) =
(
x(t), y(t)

)
= γ(t) can be rewritten asfp(t) = x(t)− xp = 0

gp(t) = y(t)− yp = 0

Polynomials fp and gp have a common root at t.

We need a bivariate polynomial Γ(p) that vanishes if and only if two
one-variable polynomials fp and yp have a common root.

3

Implicit vs. explicit

We say that a bivariate polynomial Γ(u, v) is the implicit form of a
parametric polynomial curve γ(t) =

(
x(t), y(t)

)
if

Γ(p) = 0 ⇐⇒ ∃t | p = γ(t)

Given expressions for x and y, how do we obtain an expression for Γ?

The condition p = (xp, yp) =
(
x(t), y(t)

)
= γ(t) can be rewritten asfp(t) = x(t)− xp = 0

gp(t) = y(t)− yp = 0

Polynomials fp and gp have a common root at t.

We need a bivariate polynomial Γ(p) that vanishes if and only if two
one-variable polynomials fp and yp have a common root.

3

The resultant

If we knew the roots of a1,a2, . . . ,ar of fp and b1,b2, . . . ,bs of gp, which
depend on p, of course, we could write

R(fp,gp) =
r∏
i=1

s∏
j=i

(ai − bj)

We call R(fp,gp) the resultant of fp,gp

Is there an expression for the resultant that does not require
knowledge of the roots of fp and gp?

It makes sense that there should be! Think about the Vieta formulas
for sums of products of roots!

4

The resultant

If we knew the roots of a1,a2, . . . ,ar of fp and b1,b2, . . . ,bs of gp, which
depend on p, of course, we could write

R(fp,gp) =
r∏
i=1

s∏
j=i

(ai − bj)

We call R(fp,gp) the resultant of fp,gp

Is there an expression for the resultant that does not require
knowledge of the roots of fp and gp?

It makes sense that there should be! Think about the Vieta formulas
for sums of products of roots!

4

The resultant

If we knew the roots of a1,a2, . . . ,ar of fp and b1,b2, . . . ,bs of gp, which
depend on p, of course, we could write

R(fp,gp) =
r∏
i=1

s∏
j=i

(ai − bj)

We call R(fp,gp) the resultant of fp,gp

Is there an expression for the resultant that does not require
knowledge of the roots of fp and gp?

It makes sense that there should be! Think about the Vieta formulas
for sums of products of roots!

4

The resultant

If we knew the roots of a1,a2, . . . ,ar of fp and b1,b2, . . . ,bs of gp, which
depend on p, of course, we could write

R(fp,gp) =
r∏
i=1

s∏
j=i

(ai − bj)

We call R(fp,gp) the resultant of fp,gp

Is there an expression for the resultant that does not require
knowledge of the roots of fp and gp?

It makes sense that there should be! Think about the Vieta formulas
for sums of products of roots!

4

The Sylvester form for the resultant

Let f and g have a common root and let
deg(f) = m and deg(g) = n

There is h with deg(h) = 1 such that
f (t) = h(t)r(t) and g(t) = h(t)s(t)

We can eliminate h from the equations by noticing that
f (t)s(t) = h(t)r(t)s(t) = g(t)r(t)

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

5

The Sylvester form for the resultant

Let f and g have a common root and let
deg(f) = m and deg(g) = n

There is h with deg(h) = 1 such that
f (t) = h(t)r(t) and g(t) = h(t)s(t)

We can eliminate h from the equations by noticing that
f (t)s(t) = h(t)r(t)s(t) = g(t)r(t)

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

5

The Sylvester form for the resultant

Let f and g have a common root and let
deg(f) = m and deg(g) = n

There is h with deg(h) = 1 such that
f (t) = h(t)r(t) and g(t) = h(t)s(t)

We can eliminate h from the equations by noticing that
f (t)s(t) = h(t)r(t)s(t) = g(t)r(t)

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

5

The Sylvester form for the resultant

Let f and g have a common root and let
deg(f) = m and deg(g) = n

There is h with deg(h) = 1 such that
f (t) = h(t)r(t) and g(t) = h(t)s(t)

We can eliminate h from the equations by noticing that
f (t)s(t) = h(t)r(t)s(t) = g(t)r(t)

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

5

The Sylvester form for the resultant

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

We do not know the value of t, so we don’t know the coefficients of
(r0, r1, . . . , rm−1) of r and (s0, s1, . . . , sn−1) of s, but we know the
coefficients fi, gj of f and g

The coefficient equations are
f0s0 = g0r0

f1s0 + f0s1 = g1r0 + g0r1
f2s0 + f1s1 + f0s2 = g2r0 + g1r1 + g0r2

...
fmsn−1 = gnrm−1

6

The Sylvester form for the resultant

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

We do not know the value of t, so we don’t know the coefficients of
(r0, r1, . . . , rm−1) of r and (s0, s1, . . . , sn−1) of s, but we know the
coefficients fi, gj of f and g

The coefficient equations are
f0s0 = g0r0

f1s0 + f0s1 = g1r0 + g0r1
f2s0 + f1s1 + f0s2 = g2r0 + g1r1 + g0r2

...
fmsn−1 = gnrm−1

6

The Sylvester form for the resultant

These polynomials are identical, so all coefficients must be the same
f (t)s(t) = g(t)r(t)

We do not know the value of t, so we don’t know the coefficients of
(r0, r1, . . . , rm−1) of r and (s0, s1, . . . , sn−1) of s, but we know the
coefficients fi, gj of f and g

The coefficient equations are
f0s0 = g0r0

f1s0 + f0s1 = g1r0 + g0r1
f2s0 + f1s1 + f0s2 = g2r0 + g1r1 + g0r2

...
fmsn−1 = gnrm−1

6

The Sylvester form for the resultant

In matrix form

f0 g0
... f0 g1

. . .

fm
... g0
fm f0 gn g1

.
fm gn





s0
...

sn−1
−r0
...

−rm−1


=

0...
0



The polynomials have a common root iff the linear system has a
non-trivial solution

The resultant is the determinant of this (m+ n)× (m+ n) matrix

7

The Sylvester form for the resultant

In matrix form

f0 g0
... f0 g1

. . .

fm
... g0
fm f0 gn g1

.
fm gn





s0
...

sn−1
−r0
...

−rm−1


=

0...
0



The polynomials have a common root iff the linear system has a
non-trivial solution

The resultant is the determinant of this (m+ n)× (m+ n) matrix

7

The Sylvester form for the resultant

In matrix form

f0 g0
... f0 g1

. . .

fm
... g0
fm f0 gn g1

.
fm gn





s0
...

sn−1
−r0
...

−rm−1


=

0...
0



The polynomials have a common root iff the linear system has a
non-trivial solution

The resultant is the determinant of this (m+ n)× (m+ n) matrix

7

The Cayley-Bezout form for the resultant

Consider the bivariate polynomial
p(s, t) = f (s)g(t)− f (t)g(s)

It clearly has a root at t = s

So we can factor it out and think about r(s, t), where
r(s, t)(s− t) = p(s, t)

If f ,g have a common root at t, then p(s, t) vanishes identically

Therefore, so does r(s, t)

8

The Cayley-Bezout form for the resultant

Consider the bivariate polynomial
p(s, t) = f (s)g(t)− f (t)g(s)

It clearly has a root at t = s

So we can factor it out and think about r(s, t), where
r(s, t)(s− t) = p(s, t)

If f ,g have a common root at t, then p(s, t) vanishes identically

Therefore, so does r(s, t)

8

The Cayley-Bezout form for the resultant

Consider the bivariate polynomial
p(s, t) = f (s)g(t)− f (t)g(s)

It clearly has a root at t = s

So we can factor it out and think about r(s, t), where
r(s, t)(s− t) = p(s, t)

If f ,g have a common root at t, then p(s, t) vanishes identically

Therefore, so does r(s, t)

8

The Cayley-Bezout form for the resultant

Consider the bivariate polynomial
p(s, t) = f (s)g(t)− f (t)g(s)

It clearly has a root at t = s

So we can factor it out and think about r(s, t), where
r(s, t)(s− t) = p(s, t)

If f ,g have a common root at t, then p(s, t) vanishes identically

Therefore, so does r(s, t)

8

The Cayley-Bezout form for the resultant

Consider the bivariate polynomial
p(s, t) = f (s)g(t)− f (t)g(s)

It clearly has a root at t = s

So we can factor it out and think about r(s, t), where
r(s, t)(s− t) = p(s, t)

If f ,g have a common root at t, then p(s, t) vanishes identically

Therefore, so does r(s, t)

8

The Cayley-Bezout form for the resultant

p(s, t) is anti-symmetrical in s, t, but r(s, t) is symmetrical

Let k = max
(
deg(f), deg(g)

)
, then

r(s, t) =
[
1 · · · sk

]a11 · · · a1k
...
ak1 · · · akk


 1...
tk


The resultant is the determinant of this k× k matrix

Its rank-deficiency is the number of common roots in f ,g

The smaller matrices lead to smaller expressions for the resultant

A good discussion of resultants, as applied to computer graphics, can
be found in [de Montaudoin and Tiller, 1984, Goldman et al., 1984].
There are even formulas for polynomials in the Bernstein basis

9

The Cayley-Bezout form for the resultant

p(s, t) is anti-symmetrical in s, t, but r(s, t) is symmetrical

Let k = max
(
deg(f), deg(g)

)
, then

r(s, t) =
[
1 · · · sk

]a11 · · · a1k
...
ak1 · · · akk


 1...
tk



The resultant is the determinant of this k× k matrix

Its rank-deficiency is the number of common roots in f ,g

The smaller matrices lead to smaller expressions for the resultant

A good discussion of resultants, as applied to computer graphics, can
be found in [de Montaudoin and Tiller, 1984, Goldman et al., 1984].
There are even formulas for polynomials in the Bernstein basis

9

The Cayley-Bezout form for the resultant

p(s, t) is anti-symmetrical in s, t, but r(s, t) is symmetrical

Let k = max
(
deg(f), deg(g)

)
, then

r(s, t) =
[
1 · · · sk

]a11 · · · a1k
...
ak1 · · · akk


 1...
tk


The resultant is the determinant of this k× k matrix

Its rank-deficiency is the number of common roots in f ,g

The smaller matrices lead to smaller expressions for the resultant

A good discussion of resultants, as applied to computer graphics, can
be found in [de Montaudoin and Tiller, 1984, Goldman et al., 1984].
There are even formulas for polynomials in the Bernstein basis

9

The Cayley-Bezout form for the resultant

p(s, t) is anti-symmetrical in s, t, but r(s, t) is symmetrical

Let k = max
(
deg(f), deg(g)

)
, then

r(s, t) =
[
1 · · · sk

]a11 · · · a1k
...
ak1 · · · akk


 1...
tk


The resultant is the determinant of this k× k matrix

Its rank-deficiency is the number of common roots in f ,g

The smaller matrices lead to smaller expressions for the resultant

A good discussion of resultants, as applied to computer graphics, can
be found in [de Montaudoin and Tiller, 1984, Goldman et al., 1984].
There are even formulas for polynomials in the Bernstein basis

9

The Cayley-Bezout form for the resultant

p(s, t) is anti-symmetrical in s, t, but r(s, t) is symmetrical

Let k = max
(
deg(f), deg(g)

)
, then

r(s, t) =
[
1 · · · sk

]a11 · · · a1k
...
ak1 · · · akk


 1...
tk


The resultant is the determinant of this k× k matrix

Its rank-deficiency is the number of common roots in f ,g

The smaller matrices lead to smaller expressions for the resultant

A good discussion of resultants, as applied to computer graphics, can
be found in [de Montaudoin and Tiller, 1984, Goldman et al., 1984].
There are even formulas for polynomials in the Bernstein basis

9

The Cayley-Bezout form for the resultant

p(s, t) is anti-symmetrical in s, t, but r(s, t) is symmetrical

Let k = max
(
deg(f), deg(g)

)
, then

r(s, t) =
[
1 · · · sk

]a11 · · · a1k
...
ak1 · · · akk


 1...
tk


The resultant is the determinant of this k× k matrix

Its rank-deficiency is the number of common roots in f ,g

The smaller matrices lead to smaller expressions for the resultant

A good discussion of resultants, as applied to computer graphics, can
be found in [de Montaudoin and Tiller, 1984, Goldman et al., 1984].
There are even formulas for polynomials in the Bernstein basis

9

Implicitization results

For a quadratic parametric curve
• We already knew how to solve this problem…

For a rational quadratic parametric curve
• The equation changes to

p = (xp, yp) =
(
x(t)/w(t), y(t)/w(t)

)
= γ(t)

• It can be rewritten asfp(t) = x(t)− xpw(t) = 0

gp(t) = y(t)− ypw(t) = 0

• So it reduces to the integral case

For a cubic…

10

Implicitization results

For a quadratic parametric curve
• We already knew how to solve this problem…

For a rational quadratic parametric curve
• The equation changes to

p = (xp, yp) =
(
x(t)/w(t), y(t)/w(t)

)
= γ(t)

• It can be rewritten asfp(t) = x(t)− xpw(t) = 0

gp(t) = y(t)− ypw(t) = 0

• So it reduces to the integral case

For a cubic…

10

Implicitization results

For a quadratic parametric curve
• We already knew how to solve this problem…

For a rational quadratic parametric curve
• The equation changes to

p = (xp, yp) =
(
x(t)/w(t), y(t)/w(t)

)
= γ(t)

• It can be rewritten asfp(t) = x(t)− xpw(t) = 0

gp(t) = y(t)− ypw(t) = 0

• So it reduces to the integral case

For a cubic…

10

Implicitization results

For a quadratic parametric curve
• We already knew how to solve this problem…

For a rational quadratic parametric curve
• The equation changes to

p = (xp, yp) =
(
x(t)/w(t), y(t)/w(t)

)
= γ(t)

• It can be rewritten asfp(t) = x(t)− xpw(t) = 0

gp(t) = y(t)− ypw(t) = 0

• So it reduces to the integral case

For a cubic…

10

A “better” way to implicitize

Idea is to adapt the coordinate system to the curve γ(t)

For the quadratic, consider the 3 linear functionals
k(x, y,w), `(x, y,w) and m(x, y,w)

associated, respectively, to the line connecting the endpoints and the
two tangents at the endpoints

p0

p1

p2

` m

k

11

A “better” way to implicitize

Idea is to adapt the coordinate system to the curve γ(t)

For the quadratic, consider the 3 linear functionals
k(x, y,w), `(x, y,w) and m(x, y,w)

associated, respectively, to the line connecting the endpoints and the
two tangents at the endpoints

p0

p1

p2

` m

k

11

A “better” way to implicitize

Which points satisfy the quadratic equation k2 − `m = 0?

p0

p1

p2

` m

k

Intersections of k2 − `m = 0 with k = 0 happen when ` = 0 or m = 0

Intersection of k2 − `m = 0 with line ` = 0 happens when k = 0
• Furthermore, ` = 0 is tangent to the curve at intersection

12

A “better” way to implicitize

Which points satisfy the quadratic equation k2 − `m = 0?

p0

p1

p2

` m

k

Intersections of k2 − `m = 0 with k = 0 happen when ` = 0 or m = 0

Intersection of k2 − `m = 0 with line ` = 0 happens when k = 0
• Furthermore, ` = 0 is tangent to the curve at intersection

12

A “better” way to implicitize

Which points satisfy the quadratic equation k2 − `m = 0?

p0

p1

p2

` m

k

Intersections of k2 − `m = 0 with k = 0 happen when ` = 0 or m = 0

Intersection of k2 − `m = 0 with line ` = 0 happens when k = 0

• Furthermore, ` = 0 is tangent to the curve at intersection

12

A “better” way to implicitize

Which points satisfy the quadratic equation k2 − `m = 0?

p0

p1

p2

` m

k

Intersections of k2 − `m = 0 with k = 0 happen when ` = 0 or m = 0

Intersection of k2 − `m = 0 with line ` = 0 happens when k = 0
• Furthermore, ` = 0 is tangent to the curve at intersection

12

A “better” way to implicitize

p0

p1

p2

` m

k

Are there any additional degrees of freedom?

To find the values of the linear functionals k, `,m at control-points p1,
p2, and p3, consider their restriction to the curve γ

k
(
γ(t)

)
= k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2

= t (1− t)

`
(
γ(t)

)
= `(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2

= t2

m
(
γ(t)

)
= m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2

= (1− t)2

13

A “better” way to implicitize

p0

p1

p2

` m

k

Are there any additional degrees of freedom?

To find the values of the linear functionals k, `,m at control-points p1,
p2, and p3, consider their restriction to the curve γ

k
(
γ(t)

)
= k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2

= t (1− t)

`
(
γ(t)

)
= `(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2

= t2

m
(
γ(t)

)
= m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2

= (1− t)2

13

A “better” way to implicitize

p0

p1

p2

` m

k

Are there any additional degrees of freedom?

To find the values of the linear functionals k, `,m at control-points p1,
p2, and p3, consider their restriction to the curve γ

k
(
γ(t)

)
= k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2 = t (1− t)

`
(
γ(t)

)
= `(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2 = t2

m
(
γ(t)

)
= m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2 = (1− t)2

13

A “better” way to implicitize

Values of functionals at l.h.s are coefficients in Bernstein basis
k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2 = t (1− t)
`(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2 = t2

m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2 = (1− t)2

Convert polynomials on r.h.s to the Bernstein basis ka kb kc
`a `b `c

ma mb mc


x0 x1 x2
y0 y1 y2
w0 w1 w2

 =

0
1
2 0

0 0 1
1 0 0


Solve the linear system

This representation is very useful in graphics hardware!

14

A “better” way to implicitize

Values of functionals at l.h.s are coefficients in Bernstein basis
k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2 = t (1− t)
`(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2 = t2

m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2 = (1− t)2

Convert polynomials on r.h.s to the Bernstein basis ka kb kc
`a `b `c

ma mb mc


x0 x1 x2
y0 y1 y2
w0 w1 w2

 =

0
1
2 0

0 0 1
1 0 0



Solve the linear system

This representation is very useful in graphics hardware!

14

A “better” way to implicitize

Values of functionals at l.h.s are coefficients in Bernstein basis
k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2 = t (1− t)
`(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2 = t2

m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2 = (1− t)2

Convert polynomials on r.h.s to the Bernstein basis ka kb kc
`a `b `c

ma mb mc


x0 x1 x2
y0 y1 y2
w0 w1 w2

 =

0
1
2 0

0 0 1
1 0 0


Solve the linear system

This representation is very useful in graphics hardware!

14

A “better” way to implicitize

Values of functionals at l.h.s are coefficients in Bernstein basis
k(p0) (1− t)2 + k(p1) 2t(1− t) + k(p2) t2 = t (1− t)
`(p0) (1− t)2 + `(p1) 2t(1− t) + `(p2) t2 = t2

m(p0) (1− t)2 +m(p1) 2t(1− t) +m(p2) t2 = (1− t)2

Convert polynomials on r.h.s to the Bernstein basis ka kb kc
`a `b `c

ma mb mc


x0 x1 x2
y0 y1 y2
w0 w1 w2

 =

0
1
2 0

0 0 1
1 0 0


Solve the linear system

This representation is very useful in graphics hardware!

14

A “better” way to implicitize

For the cubic, the same ideas apply.

Unfortunately, now the linear functionals k, `,m,n cannot be placed
anywhere on the curve.

They have to be positioned at the inflection points and/or
double-point.

To read more about this, check [Loop and Blinn, 2005]

Can we replace the root-finding with implicit tests? Not yet.

15

A “better” way to implicitize

For the cubic, the same ideas apply.

Unfortunately, now the linear functionals k, `,m,n cannot be placed
anywhere on the curve.

They have to be positioned at the inflection points and/or
double-point.

To read more about this, check [Loop and Blinn, 2005]

Can we replace the root-finding with implicit tests? Not yet.

15

A “better” way to implicitize

For the cubic, the same ideas apply.

Unfortunately, now the linear functionals k, `,m,n cannot be placed
anywhere on the curve.

They have to be positioned at the inflection points and/or
double-point.

To read more about this, check [Loop and Blinn, 2005]

Can we replace the root-finding with implicit tests? Not yet.

15

A “better” way to implicitize

For the cubic, the same ideas apply.

Unfortunately, now the linear functionals k, `,m,n cannot be placed
anywhere on the curve.

They have to be positioned at the inflection points and/or
double-point.

To read more about this, check [Loop and Blinn, 2005]

Can we replace the root-finding with implicit tests? Not yet.

15

A “better” way to implicitize

For the cubic, the same ideas apply.

Unfortunately, now the linear functionals k, `,m,n cannot be placed
anywhere on the curve.

They have to be positioned at the inflection points and/or
double-point.

To read more about this, check [Loop and Blinn, 2005]

Can we replace the root-finding with implicit tests? Not yet.

15

References

Y. de Montaudoin and W. Tiller. The Cayley method in computer aided
geometric design. Computer Aided Design, 1(4):309–326, 1984.

R. N. Goldman, T. W. Sederberg, and D. C. Anderson. Vector elimination:
A technique for the implicitazion, inversion, and intersection of
planar parametric rational polynomial curves. Computer Aided
Design, 1(4):327–356, 1984.

C. Loop and J. F. Blinn. Resolution independent curve rendering using
programmable graphics hardware. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2005), 24(3):1000–1009, 2005.

16

	Resultants and implicitization
	References

