A few exercises

2D Computer Graphics: Diego Nehab

Summer 2020

Please try solving these exercises without looking their solutions up. The ones marked with one skull (

1. How do you compute the intersection between a line $a x+b y+c=0$ and circle $\left(x-x_{c}\right)^{2}+$ $\left(y-y_{c}\right)^{2}-r^{2}=0$. Use transformations to simplify the problem.
2. How do you compute the intersection between two circles $(x-a)^{2}+(y-b)^{2}-r^{2}=0$ and $(x-c)^{2}+(y-d)^{2}+s^{2}=0$. Use transformations to simplify the problem.
3. Is there an elegant way to unify these two problems?
4. Let $\gamma(t), t \in[0,1]$ be an integral quadratic Bézier segment and q a point. How do you find the point p in the segment that minimizes $\|p-q\|$? (Assume you have a function that finds roots of polynomials of any degree.)
5. What about for an integral cubic Bézier segment?
6. What about for a rational quadratic Bézier segment?
7. If the control points for a rational quadratic Bézier curve $r(t)$ in canonic form (i.e., $w_{0}=w_{2}=1$) represent an elliptical arc (i.e., $\left|w_{1}\right|<1$), show that the Bézier control points of any affine reparameterization $r(a t+b)$ of this curve can also be put in canonic form.
8. If, in the item above, $w_{1}<-1$, show that the segment has an ideal point for some $t \in[0,1]$ unless the curve is degenerate.
9. How do you convert from the SVG representation for elliptical arc segments to the control points for a rational quadratic Bézier that corresponds the same segment?
10. How do you perform the opposite operation?
11. Let $\left[\begin{array}{llll}p_{0} & p_{1} & p_{2} & p_{3}\end{array}\right]$ be the control points for an integral cubic Bézier segment, with $p_{0}=p_{1}$ and $p_{2} \neq p_{1}$. Show that the segment $p_{0} p_{2}$ is tangent to the curve.
12. Consider a circle centered at c with radius r. Let f be a point in the interior of the circle. Let p be an arbitrary point distinct from f. Let q be the intersection between the circle and the ray from f through p. Find an expression for the ratio $|p-f| /|q-f|$.
13. Show that the "radial shading" of the PDF and PostScript standards is powerful enough to represent the "radial gradients" of SVG.
