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Abstract
Real-time pixel shading techniques have become increasingly com-
plex, and consume an ever larger share of the graphics processing
budget in applications such as games. This has driven the devel-
opment of optimization techniques that either attempt to simplify
pixel shaders, or to cull their evaluation when possible. In this
paper, we follow an alternative strategy: reducing the number of
shading computations by exploiting spatio-temporal coherence.

We describe a simple and inexpensive method that uses the
graphics hardware to cache and track surface information through
time. The Real-Time Reprojection Cache stores surface informa-
tion in screen space, thereby avoiding complex data-structures and
bus traffic. When a new frame is rendered, reverse mapping by
reprojection gives each new pixel access to information computed
during the previous frame.

Using this idea, we show how to modify a variety of real-
time rendering techniques to efficiently exploit spatio-temporal
coherence. We present examples that vary as widely as stereo-
scopic rendering, motion blur, depth of field, shadow mapping, and
environment-mapped bump mapping. Since the overhead of a re-
projection cache lookup is small in comparison to the required per-
pixel processing, the cached algorithms show significant cost and/or
quality improvements over their plain counterparts, at virtually no
extra implementation overhead.

1 Introduction
Over the past few years, a clear tendency in real-time rendering ap-
plications has been the steady increase in pixel shading complexity.
As GPUs gain in power and flexibility, sophisticated per-pixel ren-
dering effects are becoming prevalent. Researchers are therefore
starting to investigate general techniques for the optimization of
pixel shading, such as automatic shader simplification [Olano et al.
2003; Pellacini 2005]. In this work, we introduce the Real-Time
Reprojection Cache (RRC), a method applicable in the optimiza-
tion of a wide range of pixel shading techniques.

Most real-time rendering applications exhibit a considerable
amount of spatio-temporal coherence (see figure 1). High frame
rates lead to small time steps, which in turn result in little change
between consecutive frames. Camera motions, object animations,
and lighting variations are all modest. Accordingly, projected vis-
ible surface areas and their properties are nearly unchanged. This
coherence can be exploited if, in the process of computing a new
frame, we can efficiently access values computed in the previous
frame.

The underlying concept in the RRC is that of reverse mapping by
reprojection (section 3). We use frame-buffers to cache surface in-
formation, thereby avoiding complex data structures and bus traffic
between the CPU and GPU. As each pixel is generated in the new
frame, we know the surface point from which it originated. We
also know where this surface point was, in 3D space, at the time the
previous frame was rendered. Therefore, we can easily find where

Figure 1: Real-time rendering applications exhibit a considerable amount
of spatio-temporal coherence. This is true for camera motions (top) as well
as for animated object (bottom). The snapshots of the Parthenon, Hero-
ine, and Ninja sequences illustrate this fact. Newly visible surface points
are rendered in red, whereas the vast majority (shown in green) were pre-
viously visible. This paper introduces a real-time method that exploits this
coherence by caching and tracking visible surface information.

it previously projected to, and whether it was visible at that time.
We can then fetch whatever surface information we stored in the
previous frame’s buffers, and use it while rendering the new frame.

In the real-time world, the raw cost of reprojecting a pixel has
traditionally been comparable to—or higher than—that of shading
the pixel anew. However, the recent popularity of sophisticated
pixel shading techniques has made reprojection a comparatively
cheap operation. This opens the door for a series of reprojection-
based optimizations that would otherwise be disadvantageous. The
RRC is a tool that greatly simplifies the implementation of such
optimizations.

Consider, for example, the possibility of caching shaded surface
colors. We can usually reuse cached values directly while render-
ing a new frame, computing new colors only for cache misses.
This can lead to significantly higher frame rates at the same vi-
sual quality. Alternatively, we can compute a full new frame, but
merge older samples into it. The results are higher quality, super-
sampled frames, whose costs have been amortized across two or
more frames.

Naturally, we are not limited to caching color information. We
can also cache the results of expensive operations, such as multi-
ple texture fetches, procedural texture computations, shadow map
tests etc. (section 4). Caching allows us to decouple the application
refresh rate from the rate at which certain computations are per-
formed. We can cache partial results, to be completed during the
rendering of future frames. Alternatively, we can cache full results
over alternating subsets of all pixels. In fact, we can combine these
two ideas in a variety of ways.

2 Related Work
Although the cost of reprojection has only recently become
cheap relative to standard real-time pixel shading techniques,
reprojection-based optimizations have been used extensively in
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other scenarios. For example, high-quality rendering techniques
such as ray-tracing or path-tracing have always been considerably
more expensive than reprojection. Additionally, given high enough
scene complexity, image based rendering techniques can run sub-
stantially faster than rasterization, even in a low-quality setting. Fi-
nally, especially designed hardware can make reprojection advan-
tageous by reducing its cost.

Expensive renderers: Badt [1988] introduced reprojection as a
technique to exploit temporal coherence in the off-line generation
of ray-traced animation sequences. Samples from the previous
frame are forward-mapped into the new frame, by reprojection, to
account for camera motion. Besides handling object motion, the
technique presented by Adelson and Hodges [1995] also guarantees
exact results. Further attempts to bring interactivity to ray-tracing,
such as the Radiance Interpolants [Bala et al. 1999] and the Render
Cache [Walter et al. 1999], resulted in very similar ideas.

One disadvantage of forward reprojection is that it leads to re-
construction challenges. Reprojection does not, in general, yield
a one-to-one correspondence between pixels in the two projection
planes. Holes and overlaps must be efficiently detected and dealt
with. Suggested solutions include carefully choosing the order in
which pixels are reprojected [McMillan and Bishop 1995], preserv-
ing previous pixel colors [Bishop et al. 1994], filtering the holes
out [Walter et al. 1999], or fully recomputing the values within
gaps [Bala et al. 1999].

A different approach is presented by the Holodeck and Tapestry
systems [Ward and Simmons 1999; Simmons and Séquin 2000].
These store samples on the vertices of a dynamically tessellated
triangle mesh that is placed in front of the camera. The mesh is ren-
dered using the graphics hardware, which automatically performs
the required interpolation. The Shading Cache [Tole et al. 2002]
goes one step further and stores samples in object space, on the
vertices of an adaptively refined representation of the scene. Ren-
dering from a full geometric representation produces better results,
especially on dynamic scenes.

Reverse reprojection seems to be the natural alternative, just as
reverse mapping is the preferred choice for texture mapping. This is
the approach we take. However, reverse reprojection requires depth
information for the new frame, and enough computing power to re-
project every pixel. Unlike our method, those that rely on using the
CPU to guide an independent renderer rarely meet these conditions.
Even in recent work, which has focused on using the GPU for ac-
celeration [Dayal et al. 2005; Zhu et al. 2005], forward reprojection
is still prevalent.

Image-based rendering: Most relevant to our work are 3D warp-
ing techniques which operate on a set of views and depth maps,
such as those presented by Chen and Williams [1993], McMillan
and Bishop [1995], and Mark et al. [1997], especially the latter.
These are mainly used to generate novel views from a set of pre-
computed or captured images, with cost that is independent of scene
complexity. Our technique, on the other hand, was designed to sup-
port animated rendering applications, such as games.

Dedicated hardware: At least two hardware architectures have
been proposed that employ reprojection to speed up real-time ren-
dering. The Address Recalculation Pipeline [Regan and Pose 1994]
and the Talisman Architecture [Torborg and Kajiya 1996] achieve
high frame rates by warping and compositing layered representa-
tions of a scene. In contrast, the general programmability of mod-
ern graphics processors allows us to design a caching scheme that
can be easily used by other programs running on the same stock
hardware.

3 The Real-Time Reprojection Cache
While rendering a given frame, an RRC application commonly ac-
cesses the cache prepared by a previous frame, and updates the
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Figure 2: The graph shows the percentage of surface area that was visible
within consecutive frames for the animation sequences of figure 1. Spatio-
temporal coherence causes rates to be generally above 90%. This justifies
our policy of keeping cache entries for visible surface areas.

cache for the frames to follow. In designing our method, our goal
was to make it as flexible as possible, ensuring that these tasks can
be performed in a simple, effective, and efficient way.

Our description of the RRC starts with standard caching compo-
nents: the eviction policy (section 3.1), data structures (section 3.2),
and the lookup mechanism (section 3.3). We also discuss sampling
issues that are specific to our domain (sections 3.4 and 3.5), as well
as control flow strategies (section 3.6).

3.1 Eviction policy

Because real-time rendering applications exhibit considerable
spatio-temporal coherence, the relevance of a cached surface en-
try is strongly tied to its visibility. After all, visible points are likely
to remain visible, and the converse is also true. This variant of the
principle of locality supports the policy of keeping cache entries for
visible points. The policy is also extremely convenient: the cache
can have a fixed size, i.e., one entry per pixel, and can be directly
addressed by pixel coordinates.

Although the cache hit rates certainly depend on the amount of
coherence in each application, our experiments show that rates in
excess of 90% are typical. Figure 2 shows the observed cache hit
rates for three animation sequences. The Parthenon (figure 1, top)
shows a fly-through over a model of the Parthenon, with static ge-
ometry but high depth complexity. The Heroine sequence (figure 1,
bottom left), shows an animated charachter with weighted skinned
vertices as she runs past the camera. Finally, the Ninja sequence
(figure 1, bottom right) shows an animated fighter performing typ-
ical martial arts movements. These real-world examples provide
strong evidence that the eviction policy is appropriate.

3.2 Data structures

Given our eviction policy, it is natural to store cache entries in GPU-
memory frame-buffers. To update the cache, the application simply
renders the payload information into one or more payload buffers.
Rendering is performed with the geometry and camera parameters
current at that time (the cache-time state). Z-buffering automati-
cally enforces the visibility eviction policy. In addition to the pay-
load data, the only required information is the depth of each cached
entry. This is usually available for free.

Besides the simplicity, cache operations are very efficient. In
general, both the screen and the cache can be updated in a single
pass on GPUs that support multiple render targets (most cards in
the market do). In practice, it is often possible to exploit the al-
pha channel to store all required information in a single render tar-
get. Memory consumption is therefore modest, and independent of
scene complexity. Furthermore, since everything remains in GPU
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Vertex shader

Compute cache-time vertex position

Output for interpolation in fragment shader

Fragment shader

Compute texture coordinates

Fetch cached depth

Compare with interpolated depth

Match?
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Figure 3: Cache lookup. The vertex shader calculates the cache-time po-
sition of each vertex. The fragment shader uses the interpolated position to
test the visibility of the current point in the cache frame-buffer.

memory, there is no bus traffic between the GPU and the CPU. Fi-
nally, cache lookups conveniently reduce to texture fetches.

3.3 Cache lookup
Conceptually, the texture coordinates for a cache lookup are com-
puted by reverse reprojection. In practice, due to the extensive in-
formation available at rendering time, the process is much simpler.
Figure 3 shows a schematic description of the process.

In general, the transformed coordinates of a vertex are calcu-
lated by a vertex program, to which the application supplies the
world, camera, and projection matrices, as well required anima-
tion parameters (such as tween factors and blending matrices used
for skinning). If the application passes the cache-time parameters
(typically for the previous frame) in addition to the current parame-
ters, the vertex program can output both the current and cache-time
transformed coordinates for each vertex.

Automatic interpolation produces the cache-time homogeneous
screen coordinates associated to each fragment. Division by w
within the fragment program produces the cache-time texture co-
ordinates. These are used to fetch the depth for the cached entry.
If this depth does not match the interpolated cache-time depth for
the pixel, we have a cache miss (much like a shadow map test). If
it does match, we have a cache hit. Payload data can then be found
using the same texture coordinates.

Notice that simple manipulations on the cache frame-buffers al-
low for a series of customizations to the lookup behavior. For in-
stance, to prevent certain objects from being cached, we can re-
render them with invalid depth. It is also trivial to propagate an
age field on each entry, and use it to control the life span of cached
values.

3.4 Spatial resampling
Reverse reprojection transforms the problematic scattering of
cached samples into a manageable gathering process. However,
since reprojected pixels do not, in general, fall exactly on top of
cached samples, some form of resampling is necessary. Fortu-
nately, the uniform structure of the cache and the hardware sup-
port for texture filtering greatly simplify this task. In fact, except
for depth discontinuities, cache lookups can be treated exactly as
texture lookups.

The best choice for texture filtering depends on the data being
cached and on the use the application makes of it. Nearest neighbor
filtering is appropriate when cached data varies smoothly, or when
results of cache lookup are post-filtered by the application. On the
other hand, considerable variation between adjacent cache samples

might justify bilinear filtering, especially if lookup results are to be
directly reused.

Reconstruction can potentially fail near depth discontinuities.
However, since we are dealing with cache lookups, we can sim-
ply detect and reject problematic requests. Although it is possible
to be perfectly conservative, most applications are less restrictive.
An efficient heuristic that works well in practice is to use bilinear
filtering when fetching cached depths. Near discontinuities, inter-
polation across significant depth variations will not match the depth
value received from the vertex shader. Lookup will therefore fail
automatically. Notice that the same argument applies to multisam-
pled frame-buffers.

Depth discontinuities pose a considerable challenge to the use
of trilinear or anisotropic filtering, which could accidentally inte-
grate across spatially unrelated data. Fortunately, since there is little
change between cache-time and lookup, we have no reason to ex-
pect significant distortions in the reprojection map. Consequently,
the area of a current screen pixel covers a similar area in the cache,
and it makes little sense to use trilinear or anisotropic filtering.

3.5 Amortized super-sampling

A common approach to eliminate aliasing artifacts from high-
quality renderings is the use of stochastic sampling [Dippé and
Wold 1985; Cook 1986]. Each pixel holds a weighted average of a
number of samples, and estimates the value of an integral over its
area. When the sampling process is unbiased, the expected value
of the samples matches the value of the integral. The quality of the
estimate is given by its variance, and depends on a series of factors.

Increasing the number of samples is the simplest variance reduc-
tion strategy, but usually entails a corresponding increase in com-
putational cost. Fortunately, because the RRC tracks surface in-
formation through time, we can amortize the cost of the sampling
process across several frames. For instance, we can use a moving
average over the past n estimates for a given surface point. Since
the estimates are independent, this effectively multiplies the vari-
ance by 1/n. A serious disadvantage is that this process requires
keeping n cache entries for each pixel.

To eliminate the storage requirement, we can use a recursive
low-pass filter instead. Let C f−1 represent the contents of the
cache at frame f − 1, and let s f be the value for the newly com-
puted sample. The recursive filter updates the cache to hold
C f = λC f−1 +(1−λ )s f , for λ ∈ (0,1). Notice that the relative
contribution of a given frame to the current estimate falls-off expo-
nentially, with time constant given by τ = −1/ lnλ . Notice further
that the recursive filter preserves the expected value of the sampling,
but multiplies its variance by (1−λ )/(1+λ ) < 1.

Figure 4 shows the effect of the parameter λ on fall-off and vari-
ance reduction. The memory of the system is defined as the time,
in frames, until a value is scaled by 1/256 (i.e., completely lost in
8-bits of precision). The trade-off is between reducing the variance
and keeping the system responsive to change. For example, choos-
ing a value of λ = 3/5 reduces the variance to 1/4 the original
by effectively considering information on the last 10 frames (see
figures 9b and 9d). Reducing the variance by 1/8 requires setting
λ = 7/9, and pushes the complete fall-off to 22 frames. In practice,
convergence happens smoothly and much sooner (the memory, as
defined above, is a worst-case measure), and each application can
find the highest acceptable value for λ .

3.6 Control flow

In order to take advantage of the caching mechanism, the appli-
cation must be able to control the execution flow towards different
code paths for the cache-hit and cache-miss cases. We refer to these
code paths as the hit shader and miss shader, respectively.

Many factors can influence the choice between different methods
for control flow in graphics hardware [Sander et al. 2005]. Once
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Figure 4: When performing amortized super-sampling with a recursive fil-
ter, there is a trade-off between the amount by which the variance is reduced
(the variance curve), and the number of frames that effectively contribute to
the current estimate (the memory curve). This trade-off is controlled by the
parameter λ . Values between 0.6 and 0.7 worked best in our tests.

again the best option ultimately depends on the application at hand.
The relative cost of the hit and miss shaders is an important factor.
The complexity of the scene also plays an important role. Finally,
hardware limitations might require a specific solution. We describe
two options, to be used in different scenarios.

The approach described in figure 5a is adequate when either the
hardware supports dynamic flow control, or when the cost for the
hit and miss shaders is comparable. The first pass simply primes
the Z-buffer. On the second pass, early Z-culling ensures that the
fragment shader will only be executed on visible pixels. Cache
lookup results are then used to branch between the hit and miss
shaders. If the hardware supports dynamic flow control, the cost of
execution will depend on the branch taken. The spatial coherence
of lookup results ensures that lock-step execution on adjacent pixels
is not an issue. Otherwise, if the cost of both branches is similar,
this is irrelevant.

If the miss shader is much more expensive than the hit shader
and dynamic flow control is not available, figure 5b describes an
alternative: the cache lookup can be moved to the first pass. On a
hit, the hit shader is executed. On a miss, the pixel is simply depth-
shifted to prime the Z-buffer. On the second pass, early Z-culling
ensures that the miss shader will only be executed on those pixels,
and only once per pixel. Notice that, in current hardware, the depth-
shift operation prevents the use of early Z-culling on the first pass.
However, since we are assuming the hit shader is relatively cheap,
this should not be a problem.

Other approaches are possible, for instance, using more than two
passes. Depending on the application, these might be justifiable. In
our tests, the options described above proved to be adequate.

4 Applications
In the previous section, we described the RRC as a general mecha-
nism for caching surface information across frames. In this section,
we present a series of concrete examples that use the RRC to exploit
spatio-temporal coherence in a variety of rendering tasks.

Perhaps the most direct application of the RRC is on stereoscopic
rendering (section 4.1). By caching color values, we can easily
boost the frame rates at no visual quality loss.

Effects such as motion blur (section 4.2) and depth of field (sec-
tion 4.3) are also strong candidates for coherence based optimiza-
tions. Although there exist efficient approximations for these appli-
cations, the most natural method involves multiple render passes.
These can be significantly optimized with the help of the RRC.

To explore the amortized super-sampling of section 3.5, we
reduce aliasing in two problematic applications. In section 4.4,

First pass

Prime Z-buffer

Second pass

Cache lookup

Hit?

Hit shader Miss shader

yes no

First pass

Cache lookup

Hit?

Hit shader Depth-shift

yes no

Second pass

Miss shader

(a) Dynamic flow control (b) Explicit early Z-culling

Figure 5: Two control flow alternatives are presented. When the hardware
supports dynamic flow control, or when the costs of the hit and miss shaders
are similar, option (a) can be used. Otherwise, explicit early Z-culling is
preferable (b).

we super-sample environment-mapped bump mapping to elimi-
nate aliasing artifacts from motion. In section 4.5, we super-
sample shadow-map lookups to produce significantly higher quality
shadow boundaries.

Results are presented within each application section. As usual,
frame rate figures depend on a series of factors, including the sys-
tem used to run the tests and the resolution being used. When com-
paring RRC methods to their plain counterparts, we instead focus
on the trade-off between quality and performance. Similar results
should apply to applications having an equivalent balance between
pixel shading and geometry processing costs. In any case, all our
results were produced on a P4 3.2GHz with an ATI X800 graphics
card.

4.1 Stereoscopic rendering

The idea of using reprojection to speed up the computation of
stereoscopic images has been explored by Adelson and Hodges
[1993] and by McMillan and Bishop [1995], respectively in the
context of ray-tracing and head-tracked displays. Both report sub-
stantial increases in frame rate due to the extensive coherence
present in nearby views.

We describe how to use the RRC to render anaglyph stereo im-
ages (see Dubois [2001] for a good review), but the same idea ap-
plies to other stereoscopic rendering techniques. On anaglyph im-
ages, the red channel is taken from the left eye view, and the green
and blue channels are taken from the right eye view. Using glasses
with color filters, each eye is exposed to the appropriate view, and
the images appear to have three dimensions.

We proceed in two passes. On the first pass, we render the
right eye view, caching the results. On the second pass, we render
the scene using the left eye camera parameters, and perform one
cache lookup per pixel. The hit shader simply copies the value read
from the right eye. The miss shader computes the pixel color from
scratch. Finally, we composite the results of the first and second
passes, preserving the appropriate color channels.

If rendering each pixel is expensive, copying the values from
one view to the other can lead to substantial performance improve-
ments. Although results might not be exact on view-dependent
scenes, artifacts are rarely distracting. Furthermore, if added pre-
cision is required, it is usually possible to cache only the expen-
sive view-independent information, and add view-dependent com-
ponents after cache lookup.

This is especially simple when the view-dependent components
are additive, such as specular highlights or reflections. On the sec-
ond pass, cache-time view-dependent information can be recom-
puted and subtracted from the cached value. The correct view-
dependent information can then be added on its place. Saturated
values can be easily detected and treated as cache misses.
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(a) View-independent (b) View-dependent

(c) Error (artificially enhanced) (d) Cache hits

Figure 6: When using the RRC with stereographic rendering, a view-
independent treatment of cached values (a) can result in incorrect im-
ages (c). Although results are perfectly acceptable in this example, errors
can be eliminated by adding view-dependent effects after cache lookup (b).
(d) In that case, we can force cache misses over saturated specular high-
lights (shown in blue), in addition to the regular misses (shown in red).

Figure 6a was generated with a view-independent treatment of
the scene. As shown in figure 6c, the comparison against ground
truth reveals the expected errors over the specular highlights. In
figure 6b, on the other hand, the highlights were recomputed af-
ter cache lookup, completely eliminating errors. Notice the view-
dependent forced cache misses in figure 6d.

The model in figure 6 has 2k triangles and uses a Perlin noise
pixel shader that requires 215 instructions per pixel (expensive, but
not unreasonable). Brute-force stereographic rendering happens at
28fps on our system. The view-dependent RRC method runs at
39fps, and the simpler view-independent version runs at 44fps. In
other words, the RRC results in a 57% frame rate increase with
negligible implementation overhead and quality loss.

4.2 Motion blur

When film is exposed for an extended interval of time, any object,
camera, or shutter motion can result in a blurry image. This effect,
known as motion blur, can be exploited to convey the idea of motion
in static photography, or to eliminate strobing from motion pictures.
The simulation of motion blur is therefore an important step in the
creation of realistic synthetic images.

Satisfactory results can be obtained, for example, with tem-
poral super-sampling [Korein and Badler 1983], stochastic sam-
pling [Cook et al. 1984; Dippé and Wold 1985], or in the frequency
domain [Potmesil and Chakravarty 1983]. In general, the high
frame rate demands of real-time rendering applications restrict the
range of viable approaches to coarser approximations, such as sil-
houette extrusion [Wloka and Zeleznik 1996]. Although graphics
hardware support for accumulation buffers makes the implemen-
tation of temporal super-sampling extremely simple [Haeberli and
Akeley 1990], the naïve approach tends to be overly slow. Fortu-
nately, spatio-temporal coherence within time samples allows us to
use reprojection to speed up the rendering process. This idea has

been explored by Chen and Williams [1993], and by Havran et al.
[2003], respectively in the context of image based rendering and
ray-tracing of animations.

To use the RRC in temporal super-sampling, we proceed as fol-
lows. Recall each output image represents an interval of time, and
is the result of accumulating a number of time samples within that
interval. We fully render the first time sample into the cache. Then,
while rendering the remaining frames for the interval, we perform
one cache lookup per pixel. The miss shader computes the pixel
color from scratch, whereas the hit shader simply reuses the cached
value for the previous frame. If an object is known to change con-
siderably in appearance over the exposure time (through animated
textures, for instance), cache misses can be forced for that object.

Given that all time samples are averaged together, the use of
reprojection causes no perceptible quality loss. On the contrary,
since the rendering process becomes much faster, more time sam-
ples can be used. Figure 7 shows a comparison of the results for
the brute-force and the RRC accumulation-based motion blur at the
same frame rates. The model shown has 2.5k triangles and uses the
same Perlin noise pixel shader used in the previous section. In this
setting, the RRC enables us to double the number of time samples.

4.3 Depth of field

The standard 3D graphics pipeline is based on the pinhole camera
model, and produces perfectly sharp images. Real cameras (as well
as our eyes), on the other hand, have lens systems with finite aper-
tures. Only points within a certain distance from the focal plane
(the depth of field) are in focus. Points that are out of focus project
to an area on the film (the circle of confusion), and result in blured
images. The effect is commonly used to direct user attention, and
is therefore important in high-quality renderings.

Depth of field can be simulated in a variety of ways [De-
mers 2004]. The most accurate methods, such as distributed ray-
tracing [Cook 1986] or the accumulation buffer [Haeberli and
Akeley 1990], are based on integration over the aperture extent.
Post-filtering techniques, such as [Potmesil and Chakravarty 1981;
Rokita 1993; Mulder and van Liere 2000; Bertalmío et al. 2004],
approximate the effect by blurring a sharp image in a depth-
dependent fashion. These are usually fast enough for real-time ren-
dering, but often have problems with intensity leakage and partial
occlusions. Eliminating these artifacts adds to the complexity of
these methods [Scofield 1992; Riguer et al. 2004].

By far, the simplest approach is to use accumulation [Haeberli
and Akeley 1990]. Several sharp images are generated under vary-
ing camera positions that sample the area of the aperture (for ex-
ample, using a Poison disk pattern). Averaging the sharp images
together produces the appropriate depth of field effect. Although
this process is computationally intensive, all images share a con-
siderable amount of spatial coherence and the RRC can be used to
significantly reduce rendering cost.

Once the camera positions are determined, each view is gener-
ated in sequence. Using RRC lookups, values computed for the last
view are reused whenever available. The high amount of coherence
between nearby views results on high cache-hit ratios. Figure 7
show results for the same scene used in the motion blur test. Once
again, using the RRC allows us to either substantially increase the
frame rates or the quality of the renderings. This time, more than
twice the number of samples can be used.

4.4 Environment-mapped bump mapping

While the previous applications used the RRC in order to avoid
rerendering portions of the scene, section 3.5 describes how the
RRC can be used to reduce the variance of super-sampling results.
The strategy can be used directly on pixel colors to produce better
results at reduced computational cost. We illustrate the technique
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(a) 60fps brute-force (b) 45fps brute-force

(c) 60fps RRC
30fps brute-force

(d) 45fps RRC
20fps brute-force

(e) 30fps RRC (f) 20fps RRC

Figure 7: The RRC can be used to optimize motion blur and depth of field
rendering. Results of running the brute-force accumulation method at high
frame rates are usually unacceptable (top). At the same frame rate, the
RRC produces much better results (middle). Matching RRC quality causes
the brute-force method to drop the frame rate. Naturally, at these lower
frame rates, the RRC produces even higher-quality results (bottom).

with a difficult problem in real-time computer graphics: the anti-
aliasing of bump-mapped environment mapping.

The complication stems from the fact that bump maps can cause
the reflection vectors emanating from nearby points on the object
to span large regions in the environment map. Since the derivative
computation used in mip-level selection is based on finite differ-
ences that span one entire pixel, adjacent pixels may end up select-
ing wildly different mip-levels. The resulting aliasing artifacts can
be extremely distracting in animations, particularly for slow mo-
tions, which cause the lack of temporal coherence in the aliasing to
becomes evident as a shimmering effect. Naturally, smoothing the
bump map can defeat the purpose of using it.

A possible solution is to generate a roughness map [Schilling
1997], which precomputes the distribution of normal vectors for
each region of the bump map. Unfortunately, this distribution can

(a) 1 tap, 316fps (b) 4 taps, 182fps

(c) 9 taps, 98fps (d) 4 taps RRC, 160fps

Figure 8: Bump-mapped environment mapping can result in severe aliasing
artifacts (a), especially in animations. In order to eliminate the problem,
many samples are required (b, c), which has a negative impact on the frame
rate. Using the RRC, we can amortize the super-sampling costs and sub-
stantially increase the frame rates (d).

be highly anisotropic, and current hardware does not have the abil-
ity to anisotropically filter across cube map faces.

The simplest solution is to super-sample the environment map
lookups. In order to do this, we generate interpolated bump-mapped
normals for a number of sub-pixel samples within each pixel. We
then compute associated reflection vectors, perform an environment
map lookup for each one, and average the resulting colors. Due to
the severity of the aliasing, many samples are required. Fortunately,
it is simple to use the RRC and a recursive filter to accumulate the
contribution of several frames. The resulting variance reduction
allows us to generate fewer new samples per frame (thus increasing
frame rates), while maintaining an acceptable visual quality.

Figure 8a depicts the aliasing artifacts resulting from using only
a single texture fetch from the environment map. Figures 8b and 8c
show the same object with 4× and 9× super-sampling of the en-
vironment map lookups. The reduction in aliasing artifacts come
at the cost of a significant drop in frame rates. Figure 8d shows
the results using the RRC to combine 4× super-sampling with a
λ = 0.6 recursive filter. The resulting quality surpasses that of 9×
super-sampling (it is roughly equivalent to 16×), but renders con-
siderably faster.

4.5 Shadow mapping

Shadows not only make synthetic images much more realistic, but
also provide important visual cues on the relative position of objects
and light sources. For these reasons (and because current graphics
hardware is powerful enough), shadow casting has become a re-
quirement in modern real-time rendering applications.

For a recent survey on shadow casting algorithms, see Hasen-
fratz et al. [2003]. Here we concentrate on an increasingly popular
approach: Shadow Mapping [Williams 1978]. The idea is to ren-
der the scene twice. On the first pass, the scene is rendered from
the point of view of the light source, and depth values are stored
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(a) 1 tap (b) 4 taps

(c) 16 taps (d) 4 taps RRC

(e) blured and
narrowed

(f) thresholded

Figure 9: The RRC can be used to super-sample shadow-map tests. The
images show a closeup of the Parthenon. (a) When the resolution of the
shadow map is not high enough, aliasing effects are clearly visible. (b)
PCF turns aliasing into high-frequency noise by averaging the results of
several taps. (c) Increasing the number of taps makes the noise barely visi-
ble, but can be too expensive. (d) Amortized super-sampling can eliminate
the additional cost. (e) Shadow boundaries can be blured and narrowed in
screen space for added quality. (f) Approximate, alias-free hard shadows
can be obtained by thresholding.

in a shadow map. On the second pass, the scene is rendered from
the observer’s point of view. While each pixel is generated, it is
transformed into the light source’s reference frame, and tested for
visibility against the shadow map. Failure means the pixel is in
shadow.

Although it is extremely simple and general, shadow mapping
is plagued by aliasing problems, because the sampling densities on
the screen and on the shadow map can be considerably different
(see figure 9a). One solution is to increase the effective resolution
of the shadow map [Fernando et al. 2001; Stamminger and Dret-

takis 2002]. A simpler alternative is to use the Percentage Closer
Filtering (PCF) of Reeves et al. [1987] (see figure 9b). The idea
is to integrate the result of the shadow tests over a neighborhood of
the shadow map. The integration is performed stochastically, with a
Poisson disk sampling pattern, which transforms aliasing into high-
frequency noise. The noise becomes barely visible when 16 taps
into the shadow map are averaged together (figure 9c).

This sampling process is directly amenable to optimization by
the amortized super-sampling method of section 3.5 (see figure 9d).
We compute PCF results at each frame, randomly rotating the sam-
pling patterns each time (to make them independent). Using the
RRC and a recursive filter with λ = 3/5, the variance is reduced to
1/4 the original. This effectively renders a 4-tap PCF as good as a
much more expensive 16-tap PCF (contrast figures 9c and 9d).

To reduce the amount of noise even further, we can apply a
screen space Gaussian blur to the cached PCF values, by rendering a
full-screen quadrilateral. The accumulation process then causes the
contribution of older cached values to be progressively smoother.
Finally, the width of the shadow transitions can be narrowed by
remapping the PCF values with a smooth step function. Figure 9e
shows the result of these two extra steps. Noise levels are so small
that the shadow boundaries can be thresholded to produce approx-
imate, alias-free hard shadows (see figure 9f). The method runs at
the same speed as the rotated 4-tap PCF, but produces substantially
better results.

5 Conclusions
In this paper, we presented the Real-Time Reprojection Cache, a
simple, efficient, and effective technique to cache surface informa-
tion across frames. This information can be used to improve the
quality, amortize the cost, or increase the rendering speed of sub-
sequent frames. We demonstrated the effectiveness of the RRC by
presenting a variety of concrete examples.

Limitations: The main underlying assumption in the use of the
RRC is that reprojection is essentially free. This is true whenever
the cost of shading a pixel is high. Conversely, applications dealing
with high geometric complexity and low pixel shading costs might
not benefit at all from the technique. This problem can be aggra-
vated if the per-vertex transformations are expensive, since at each
frame these operations have to be repeated with the cache-time pa-
rameters.

A limitation of the amortized super-sampling is the inertia in-
troduced by the memory of the recursive filter. The effect is visi-
ble when surface properties are changing with time. In that case,
choosing high values for λ (above 0.7) can cause a trailing effect,
not unlike motion blur. If frame rates are not high-enough, this can
become unacceptable. In that case, lower values of λ usually solve
the problem, at the expense of variance reduction.

Future work: Naturally, we have not explored all applications
for the RRC. We are experimenting with a technique which we call
amortized tiled rendering. The idea is to alternatingly render half
of each frame from scratch, and use the previous frame as a cache
while rendering the other half. Preliminary results show that this
technique can increase the effective frame rate by almost a factor of
two, with little noticeable quality loss. Naturally, the idea could be
pushed even further, by rerendering only 1/3 or 1/4 of the pixels
every frame.

It would be also interesting to use our technique to guide an au-
tomatic per-pixel selection of shader level-of-detail. A set of pro-
gressively cheaper shaders for the same effect could be produced
automatically [Olano et al. 2003; Pellacini 2005] or by hand. No-
tice that reprojection gives the application access to the exact mo-
tion field for the animation sequence. The speed at which a surface
point moves on screen could be used to dynamically select among
the shaders, including reusing the result of a cache lookup. This
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could potentially result in higher frame rates at no perceptible qual-
ity loss, especially if motion blur is involved.
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