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Figure 1: Our acquisition system, deployed at the Akrotiri Excavation, Thera. We use a flatbed scanner to capture high-resolution images and
normals of wall painting fragments (shown at left), and multiple 3-D scanners to acquire geometry. A single user can operate up to four scanners
simultaneously, while a second user operates the flatbed scanner and verifies processing results. This yields a throughput of approximately 10
fragments per hour. Our matching algorithm correctly finds the only two matches in this data set using the scanned 3-D geometry.

Abstract
Although mature technologies exist for acquiring images, geom-
etry, and normals of small objects, they remain cumbersome and
time-consuming for non-experts to employ on a large scale. In
an archaeological setting, a practical acquisition system for routine
use on every artifact and fragment would open new possibilities for
archiving, analysis, and dissemination. We present an inexpensive
system for acquiring all three types of information, and associated
metadata, for small objects such as fragments of wall paintings. The
acquisition system requires minimal supervision, so that a single,
non-expert user can scan at least 10 fragments per hour. To achieve
this performance, we introduce new algorithms to robustly and au-
tomatically align range scans, register 2-D scans to 3-D geometry,
and compute normals from 2-D scans. As an illustrative applica-
tion, we present a novel 3-D matching algorithm that efficiently
searches for matching fragments using the scanned geometry.

1 Introduction
Computer-based acquisition and processing of 3-D shape and re-
flectance data has proven its potential to revolutionize certain kinds
of research in the humanities and social sciences. However, previ-
ous “computational humanities” projects have necessarily involved
significant manual labor and nontrivial participation by computer
scientists. This is because the tools for high-throughput 3-D scan-
ning, calibrated reflectance measurement, systematic organization
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of acquired data, and applications such as 3-D shape search have
been in the realm of research, rather than production. As these
technologies mature, their availability to non-computer experts can
be broadened by solving the crucial problems of scalability and us-
ability. This paper focuses on the associated technical challenges.

We describe how to integrate acquisition and processing tools
recently developed in the computer graphics field into a system suit-
able for large-scale archaeological documentation and reconstruc-
tion. Although we present our work in the context of a case-study,
described below, our methods for rapid acquisition by non-experts,
automatic and robust 3-D reconstruction, user-focused workflow,
and scalable 3-D search are applicable to many archaeological ex-
cavations and cultural heritage projects, and could be deployed
broadly with minimal incremental development effort.

We focus on the specific problem of documenting and recon-
structing fragments of wall paintings from the site of Akrotiri on
the volcanic island of Thera (modern-day Santorini, Greece). An
eruption destroyed the ancient civilization, burying the remains of
a flourishing Late Bronze Age (c. 1630 B.C.) settlement in ash,
similar to Pompeii. Excavations have yielded an unparalleled trove
of artifacts and information from the prehistoric Aegean, includ-
ing numerous wall paintings ranging from naturalistic and narrative
scenes to abstract motifs [Doumas 1992].

Uniquely, much of the original plaster material remains at
Akrotiri; from the tens of thousands of small lime-plaster fragments
uncovered at the site (typically less than 10 cm across and less than
1 cm thick), it is possible to largely reconstruct interior walls of
buildings and thereby recover important clues to the culture, tech-
nology, and architecture of ancient Thera. The fragments tested in
this paper come from a huge wall painting (approximately 5.20 m
× 3.20 m) depicting symmetrical pairs of spirals (Figure 15); the
original wall was not preserved at all. Thus, the restoration of this
composition is also important to studying the architecture and func-
tion of the collapsed third floor of the building [Vlachopoulos 2008,
454, Figure 41.47–50].

At Akrotiri, as at other excavations, recent computer graphics
research may significantly improve the quality of artifact documen-
tation and reduce the human labor involved in matching the “jigsaw
puzzle” of fragments (currently estimated at 75% of the total human
effort at the site), freeing up time for other important tasks includ-
ing conservation and restoration. For example, 3-D scanning may
provide more complete documentation of the state of excavated
fragments; registration algorithms may be used to align the 3-D



scans with 2-D color scans or photographs; both the 3-D and 2-D
data may be stored in a database together with relevant metadata
such as the location where the fragment was excavated and the tray
in which it is stored; and automatic image and 3-D search methods
may suggest fragment matches. All told, the time to reconstruct a
complete wall may be reduced from years to months.

The key challenge to building an effective acquisition system is
minimizing manual labor without sacrificing data quality. Analysis
tools such as matching algorithms face the same challenge. From
this perspective, scalability and usability issues remain with each
technology and algorithm suggested above. Therefore, we make
the following contributions:
• An inexpensive and rapid 3-D model acquisition system that

produces complete models of at least 10 fragments per hour with
a single non-expert operator. The most important component is
a robust registration algorithm for automatic, high-quality range
scan alignment in the presence of unstable or degenerate geom-
etry (e.g., the flat surfaces of wall painting fragments).

• Algorithms for obtaining 2-D color scans and normals (used to
document fine relief on the front surfaces of some wall paint-
ings), and registering these to the 3-D geometry. All scanned
data and metadata are stored in a database, permitting fragment
queries according to a variety of criteria.

• An efficient algorithm for computing candidate 3-D matches
between pairs of fragments. In contrast with descriptor-
based methods, our algorithm incrementally computes the exact
matching error at all possible orientations. Using a novel mesh
parameterization, we obtain the performance of a 2-D contour
matcher while computing matching error on full 3-D geometry.

Our approach builds on many previous collaborations between
computer graphics, art history, and archaeology. The Digital
Michelangelo [Levoy et al. 2000], Forma Urbis Romae [Koller et al.
2006], and Pietà [Bernardini et al. 2002] projects, among many
others, have demonstrated the usefulness of high-resolution 3-D
scanning: the David model was used to plan a cleaning [Bracci et al.
2004], several new matches between Forma Urbis fragments have
been found using the 3-D models [Huang et al. 2006; Koller et al.
2006], and the Pietà model has been used to analyze the statue’s
damage and subsequent repair [Wasserman et al. 2002]. However,
the scanners used in these projects were expensive and unwieldy,
and operation and data processing required teams of trained experts.

Other projects have focused on archaeological excavations, es-
pecially on reassembling pottery (e.g. [Willis 2004]). The princi-
pal acquisition goal in these projects has been to recover profile
curves — cross-sections of pottery through the axis of rotation —
which are important for both matching and archaeological study.
This requires less complete data than we acquire, but the chal-
lenges of scalability and usability remain. Karasik and Smilan-
sky [2008] discuss these issues, and present a system with which
a user can capture 3-D scans of 10–15 pottery fragments (sherds)
per hour. (As with our system, multiple operators working together
can achieve higher throughput using the same hardware.) However,
this system mounts sherds in a frame that obscures parts of their
edges. With a similar amount of manual labor, we capture full 3-D
models, as well as high-resolution images and normals.

2 Design Decisions
Our goal is to design a system and interface for efficient acquisition
of geometric and reflectance data for thousands of modest-sized ar-
tifacts (5–10 cm across). Because computers and acquisition hard-
ware are inexpensive relative to people, our design decisions favor
capturing the most complete representation of an object with the
least amount of human supervision. The required time could be
further reduced by capturing only the immediately necessary data
types, deferring other acquisition until later. But retrieving items

Figure 2: Projected 3-D color of the front surface (left) and the cor-
responding, aligned 2-D scan (right). The 2-D scan includes some
edge information as well, which is distorted by the flatbed scanner’s
push-broom projection, directional lighting, and narrow depth-of-field.
However the front surface is evenly lit, undistorted, and sharper than
the projected 3-D color.

from storage is itself time- and space-consuming, and becomes
more difficult once fragments have been physically reassembled.
We therefore prefer to capture as much data as possible at once.

2-D Images High-resolution images of the fragments’ front sur-
faces are the most basic type of acquired data. The benefits for
archiving, analysis, digital restoration, and matching based on dec-
oration are evident. A contour derived from the front surface image
is also useful for matching.

Color images may be obtained with a digital camera, a flatbed
scanner, or a 3-D scanner (in conjunction with geometry). We use
a flatbed scanner, because it does not require careful control of am-
bient lighting or fragment positioning, achieves higher resolution
than either a camera or 3-D scanner, and guarantees a fixed spatial
resolution since the sensor’s distance to the object surface is con-
stant. Figure 2 compares the projected color obtained from our 3-D
scans to a 2-D scan; we believe that the improved color fidelity and
resolution justify the additional effort of performing 2-D scans.

Flatbed scanners do have drawbacks. Their depth-of-field is low
(only a few millimeters for the hardware we have tested), and we
cannot always extract contours for 2-D matching since it is difficult
to distinguish pixels belonging to the front side from those coming
from the fractured edges. Wall painting fragments, however, have
flat front faces (with few exceptions), we use the scanned color for
texture-mapping 3-D models rather than contour matching, and the
availability of the 3-D geometry allows us to readily separate the
front from the edges, as described in Section 4.2.

3-D Geometry While iconographic study of the wall paintings
relies primarily on images, geometry is the most important cue for
matching. Many matches are found, and all are verified, by testing
whether fragments “lock” together. Thickness is used to quickly
discard incompatible pairs. The back may contain impressions of
material from the underlying mud-brick walls (such as reeds, peb-
bles, and sand), which are useful cues in the absence of decoration.
Finally, contours may be extracted from the intersection of the 3-D
model and a plane, which is offset from the front and back surfaces
to avoid eroded regions.

Most fragments are less than 10 cm in diameter, and vary from
a few millimeters to a few centimeters in thickness, well within the
viewing volume of commercial 3-D laser range scanners. Geome-
try acquisition with sub-millimeter accuracy is therefore technically
feasible: the challenge is minimizing the necessary user interac-
tion. While commercial scanning software such as TowerGraphics
Easy3DScan and NextEngine ScanStudio can automatically align a
single series of scans taken on a turntable, it is impossible to capture
all sides of an object in a single scan sequence. Furthermore, wall
painting fragments yield flat, degenerate geometry, which standard
alignment algorithms cannot handle [Gelfand et al. 2003].

By positioning the scanner at a 45-degree angle to a turntable,
it is possible to acquire all necessary range scans with two scan
sequences (Figure 3). As shown in Section 4.1, this setup also



Figure 3: Using an off-the-shelf 3-D scanner (front), positioned at a 45-
degree angle relative to a motorized turntable, we can acquire the front,
back, and sides of a fragment with a single manual flip. A 2-D scanner
(rear) simultaneously acquires high-resolution color and normals.

provides enough constraints to align all range scans robustly and
automatically, despite degenerate geometry.
Normals In Akrotiri wall paintings, artists frequently used string
impressions as an aid to demarcate long, straight color edges. More
intricate designs such as spirals were sometimes prepared with nar-
row incisions [Vlachopoulos 2008]. The impressions are helpful
in matching, analysis and restoration, because they survive even
where the original pigment does not. Such narrow, shallow mark-
ings are difficult to capture with either an image or range scanner.
However, their sharp changes in normal direction show up clearly,
as seen in Figure 8.

Several systems have been proposed for capturing normals, us-
ing both calibrated [Woodham 1980; Bernardini et al. 2002; Ne-
hab et al. 2005] and uncalibrated [Toler-Franklin et al. 2007] point
light sources. Instead, we rely on the flatbed scanner’s linear light
source, which is placed at a fixed angle with respect to the moving
CCD. Hence, we may compute normals from multiple scans with
different object rotations. (We typically use four scans, rotating the
object 90◦ between each.) Combining normal and image acquisi-
tion exploits the flatbed scanner’s high resolution while keeping the
number of discrete scanning steps low.

Our method of obtaining normals is similar to the linear light
source reflectometry of Gardner et al. [2003]. However, because
we obtain a single image per scan, instead of a full time-sequence
of images, our setup requires different calibration and normal-
computation techniques. These are described in Section 4.3.

3 Acquisition Workflow
From the user’s perspective, there are three discrete acquisition
steps: 2-D scanning (images and normals), 3-D scanning, and ver-
ification and correction of results. In addition, the system must
be periodically calibrated. The manual labor required at each step
is largely dependent on interface design. While verification and
correction effort is affected by the robustness of our registration
algorithms — fewer errors mean fewer corrections — presenting an
interface in which corrections are simple and efficient is just as
important. We have therefore organized the acquisition and ver-
ification workflow into a series of simple operations that can be
performed by a single operator in sequence or by several in parallel.
The user interaction with each stage of our system, captured in real
time, is shown in the accompanying video.
Image and Normal Acquisition The user enters a fragment’s ID
into the 2-D scanning software, places the fragment face-down on
the flatbed scanner, and clicks the “scan” button. The software au-
tomatically finds the fragment’s location in a pre-scan using back-
ground subtraction, scans it, and stores it in the fragment database.

The user performs four scans, rotated by approximately 90 degrees,
then turns the fragment over and repeats the process.

Acquiring four scans of the front and back surfaces, which is re-
quired to capture normals, a single user can scan approximately 20
fragments per hour. If normals are not required, only a single scan
of each face is performed, for a 70 fragment-per-hour throughput.

Geometry Acquisition The user places the fragment face-down
on the turntable, and enters the fragment ID and laser start and end
positions. The software acquires a set number of range scans (six
by default, but adjustable for large fragments), rotating the turntable
between each scan. The user turns the fragment face-up, acquires a
second sequence of scans, and moves on to the next fragment. The
first fragment is automatically aligned in the background. While
scanning is in progress, the user can enter any meta-information
and notes (ancient and modern damage, erosion, stains from or-
ganic materials, etc., and the excavation finding unit that codes
provenance, mode of destruction, and other group-based metadata),
although notes can also be entered separately.

The 3-D scanners we use are capable of acquiring approximately
five fragments per hour. However, because the process is almost
completely automatic, a single user can operate four scanners si-
multaneously, thereby acquiring 20 fragments per hour.

Maximizing Efficiency We have observed that a number of
“tricks” improve the efficiency of acquisition. Although each of
these is seemingly trivial in itself, we nevertheless document them
here as an aid to practitioners:
• When the flatbed scanner smudges, the operator simply places

fragments on a different area of the glass, which reduces clean-
ing frequency. Our background subtraction algorithm for locat-
ing fragments is reliable enough to continue locating the frag-
ment and ignore smudges;

• We cover the 3-D scanner’s turntable with a black cloth, to ex-
clude its geometry from the scans. Cloth is more diffuse than
black paint and dust and debris can be easily shaken off. A
small white dot placed at the turntable axis helps center objects;

• The operator uses small wedges, also covered in black cloth, to
stabilize fragments that do not sit flat on the turntable;

• A target of concentric circles aids in selecting the laser start and
end positions (Figure 4). The chart is calibrated before scanning
by placing it on the turntable and noting the scanner position
when the laser crosses each circle. During scanning, the opera-
tor places a fragment on this diagram and reads off the optimal
limits for the scan. Selecting tight scanning limits, instead of
performing full-range scans, reduces total scanning time (often
by a factor of 3) for a typical assortment of fragment sizes;

• The time spent adjusting scan limits is further reduced if the
fragments are scanned in approximate order of size;

• Both 2-D and 3-D scanning software play a sound whenever a
scan sequence is complete and intervention is required. This
allows for easy multi-tasking by operators.

Figure 4: To reduce scanning time, a target records scanner settings
for several laser positions (left). The operator uses this target to set the
laser range for each fragment, so that only the relevant portion of the
viewing volume is scanned (right).



Verification and Correction Once alignment and processing are
complete, the user must verify their correctness. First he verifies
that the geometry has been correctly acquired and aligned, then
that the 2-D image is correctly registered to the geometry. When a
processing stage fails, the simplest possible interface is presented to
the user to correct only that error, after which automatic processing
resumes. This minimizes the manual effort spent on each fragment.

There are three possible failure modes for geometry acquisition.
If the turntable or scanner is bumped during acquisition, resulting
in bad data, the fragment must be rescanned. If the fragment edge
is large and flat, it may be incorrectly identified as the front sur-
face; when that happens, the operator clicks on the front surface
to automatically reorient the front scans. Finally, if the front scans
are misaligned horizontally with respect to the back scans, the user
repositions them with our constrained alignment interface. Because
manipulation occurs within a plane, it is much simpler to control
than a full 3-D manipulation interface. With this approach, correct
alignments are verified in a second or two, while the occasional
error is corrected in a few more seconds. In an experiment involv-
ing 150 fragments, verifying and correcting registration required 10
minutes, including correcting all 15 alignment errors.

Problems registering images to geometry are solved similarly to
3-D misalignment: the user provides an approximate initial align-
ment of the 2-D scan to a projection of the 3-D model’s front sur-
face, then the software re-optimizes the alignment. Although this
optimization is slower than range-scan alignment, the error rate is
also lower — only one fragment out of 150 failed to align automat-
ically — so the overall verification time remains small.

Calibration Before acquisition starts, both the flatbed and 3-D
scanners must be calibrated. The intrinsic parameters of the 3-D
scanner are computed once only, and based on our experience do
not change over time. We have also found that professional-quality,
flatbed CCD scanners have very nearly square pixels. Any devia-
tion can be compensated for when registering the image and geom-
etry. However, we must calibrate for the 3-D scanner’s turntable
position (to enable automatic alignment), for the laser positions rel-
ative to the turntable (to speed up scanning), and for the flatbed
scanner’s lighting parameters (for normal acquisition). In prac-
tice, we calibrate the flatbed scanner only once, but recalibrate the
turntable every day, even when it has not visibly moved.

The turntable position is determined by the plane of its surface,
and its axis of rotation. A menu option in the 3-D scanner software
guides the user through the calibration process. First, one scan is
acquired of the empty turntable to determine its plane. Second, two
scans are made of a single fragment, at a 30◦ rotation from each
other. The two scans are automatically aligned (subject to user ver-
ification), and the axis of rotation is extracted from this alignment.
Note that the axis does not have to be perfect: the multi-way ICP
algorithm described below recovers the optimal axis of rotation for
each scan sequence using this initial estimate.

Normal acquisition requires knowledge of how the scanner il-
luminates a diffuse target as a function of angle. We acquire this
information by scanning diffuse white cards tilted at angles ranging
from 0◦ to 25◦ towards the four sides of the scanner.

4 Automatic Processing Pipeline

The key to a practical acquisition system is automating 3-D scan
alignment and registration of 2-D scans to 3-D models. Failures
must be few and easy to correct. Because the classical iterative clos-
est point (ICP) [Besl and McKay 1992; Chen and Medioni 1992;
Rusinkiewicz and Levoy 2001] algorithm is unstable in degenerate
cases such as a fragment’s flat front surface [Gelfand et al. 2003],
we extend it to operate simultaneously on all scans from a turntable
series (i.e. all front scans or all back scans). Our extension, called
multi-way ICP, is restricted to scans on a turntable, but it is faster

and more robust than full global registration. We also introduce a
novel technique for estimating an initial alignment of the front and
back scans to each other without any user input, resulting in a fully
automatic alignment of all scans. To register images to the geom-
etry, we optimize for a transformation rather than detecting feature
points (e.g. [Lowe 2004]) because undecorated fragments do not
contain enough meaningful features to compute a robust alignment.

4.1 3-D Alignment

Given a turntable’s axis of rotation (obtained during calibration),
we have good initial estimates of the relative alignments of all front
scans and all back scans. We could refine these alignments with
ICP, but the nearly-flat front scans often do not contain enough geo-
metric constraints for the optimization to converge. Aligning fronts
to backs is even more problematic: we have no initial alignment,
since the flip was performed manually. We solve the geometric
stability problems within the front and back scans using multi-way
ICP, and handle the flip by explicitly detecting the front face and
using a constrained ICP alignment to robustly align it to the back.

Multi-Way ICP For a typical sequence of six fragment scans we
have a good initial alignment estimate because they were acquired
on a calibrated turntable; any global registration algorithm should
align them well. Indeed, even sequentially aligning each scan to
the previous one [Chen and Medioni 1992], performs well when
all alignments are stable. However, a typical front scan consists
of a nearly-flat face, with minimal additional detail from the edge;
in this unstable situation, each scan can slide parallel to the front
surface without significantly increasing the alignment error.

In contrast to the general global registration case, we have im-
portant knowledge about the alignment of scans on a turntable.
Specifically, for n scans, each scan is rotated 360/n degrees with
respect to the previous one. This insight leads to the multi-way ICP
algorithm, which aligns all scans simultaneously with one transfor-
mation (Figure 5).

In multi-way ICP, an initial rotation is estimated based on the
number of scans and the turntable’s approximate axis of rotation
(the exact axis is recovered by the optimization). Corresponding
point pairs are selected between each successive pair of scans under
the assumption that each scan aligns to the previous one using the
estimated rotation. The last scan is assumed to align to the first
one, forming a closed loop. At each iteration, a new axis of ro-
tation is computed that minimizes the alignment of all point pairs,

Figure 5: Because all six scans were acquired on a turntable, each is
rotated 60 degrees with respect to the previous one (left). Using multi-
way ICP, we solve for the single rotation that simultaneously aligns all
scans (right).

Figure 6: Front and back scan sequences and the final model. Because
the front and back scans overlap only on the vertical edges, alignment
of front to back is unstable in the vertical direction. We compute the
vertical alignment directly by detecting the front surface, eliminating
the instability.



as described in Appendix A. Even if each pair of scans is individ-
ually unstable, we can still extract a rotation from the information
distributed among all scans because we simultaneously consider
point pairs between all successive scans. Using multi-way ICP, we
correctly aligned 149 out of 150 fragments; the remaining fragment
failed because it moved during scanning.

Front-Back Alignment Unlike alignment of just a front or back
sequence, there is no good initial estimate of the relative align-
ment of fronts to backs. Moreover, there is little overlap between
front and back scans — while vertical edges are visible in both se-
quences, angled edges are only visible in one. Therefore, instead
of using a feature-based alignment technique such as spin images
[Johnson and Hebert 1997], we directly extract the front surface.

The front surface’s flatness, a hindrance for ICP, makes it easy to
fit with a plane, using iterative outlier rejection. Of course, the front
surface is not visible on the back scans because it is lying flat on the
turntable. Since we know the plane of the turntable from calibra-
tion, we can rotate the front scans to also lie in this plane, which we
define to be the z = 0 plane. Any remaining misalignment between
front and back scans is an xy planar translation and z rotation. The
translation is estimated by aligning centers of mass, and rotation is
estimated by trying 40 rotations. From this estimate, we use ICP
constrained to a planar transform to refine the alignment (Figure 6).

Out of 150 scans, the front surface was incorrectly detected only
once. For 13 scans, front-to-back alignment failed. Using our veri-
fication interface, each error was corrected in seconds.

4.2 2-D to 3-D Registration

Our 3-D scanner provides color registered to each range scan,
which we project onto the final model to obtain a colored result.
However, the scanner’s camera provides only limited color fidelity,
lighting is uneven, and resolution is limited. High resolution color
obtained under controlled illumination is important for archival pur-
poses, for studying the wall painting’s iconography, for matching
based on color and texture, and for visually verifying matches.

As noted in Section 2, the front surface is difficult to isolate
from edge data included in the scanned images. The scanned edges
also do not align to a projected image of the 3-D model, making
silhouette-based alignments [Lensch et al. 2000] unsuitable, be-
cause the scanner’s depth-of-field is too limited to acquire the entire
edge, and the linear light source is highly directional. Feature-based
methods are also ill-adapted because the many solid-colored frag-
ments lack stable image features.

Even alignment methods based on color difference or cross cor-
relation are stymied by the extraneous edge data. While we could
optimize for the scanner’s projection and lighting model, there is
a faster and more robust solution: register the scanned image to a
projection of only the 3-D model’s front surface. Recall that the
model’s front surface is aligned to the z = 0 plane, and can be ex-
tracted by rendering with the far clipping plane just behind it.

The projected image aligns to a subset of the scanned image
(which contains no edges), so we do not penalize scanned image
pixels overlapping the projected image’s background. In the inverse
case, in which a projected image pixel overlaps the scanned image’s
background, we do assess a penalty. Aside from this, we opti-
mize the alignment using a standard, normalized cross-correlation.
To accommodate minor misalignment or misorientation of the 3-D
fragment, we solve for an affine transformation (with scale limited
to ±2%), rather than a rigid one. Figure 2 shows a sample result.

To obtain an initial alignment estimate, we use PCA for rotation
and center-of-mass for translation. Because 2-D scans include edge
data, we have found the estimate is more reliable if we use a pro-
jected image that also includes edges for this stage. We improve the
initial guess further by trying rotations every 4◦ within a range of
20◦ around the estimated PCA axis, and translations every 4 mm up
to 20 mm from the center of mass.

Using this procedure we were able to correctly align 2-D scans
for 149 of our 150 test fragments automatically. The remaining
fragment was corrected by roughly positioning the 2-D scan using
our correction interface, and re-optimizing.

4.3 Normal Reconstruction

We obtain normal maps via shape from shading, beginning with
several (typically four) scans of a fragment at different orientations.
Our approach is conceptually straightforward: during a calibration
phase we measure I(n), the observed brightness as a function of
the surface normal. Then, given a set of scans, we invert I to solve
for the normal. As a side effect, we obtain the true color texture
(diffuse reflectance) of the surface.
Calibration Because the scanner’s light source is linear, not a
point, I(n) will not be of the form n · l. We therefore measure it in a
calibration step, using a diffuse plane inclined at known angles with
respect to the scanner platform. We measure the intensity at several
angles of tilt and rotation to ensure good coverage of the space of
normals. Because intensity varies with height off the scan bed, we
perform all measurements at a constant height.

We fit a spherical-harmonic model to the diffuse plane measure-
ments to obtain a parametric representation of I(n) that averages
out measurement noise and is more easily inverted. Using cross-
validation, we have determined that second-order spherical har-
monics do not substantially decrease the calibration error over a
first-order representation containing only constant and linear terms
in the normal components:

I(n) = (a0 a1 a2 a3)
( nx

ny
nz
1

)
= aT n . (1)

Normal Computation After capture, we register the scanned im-
ages using the algorithm of Section 4.2. The inverses of the result-
ing rotations, which we will call Ri, may be thought of as rotating

Figure 7: Computed normals (top right) reveal more surface detail
than those extracted from the geometry (top left). Combining the high-
resolution normals with the extracted RGB color (bottom left) allows
for enhanced visualizations [Toler-Franklin et al. 2007] of surface de-
tail (bottom right).

Figure 8: String impressions, most clearly visible in the computed nor-
mals, mark boundaries of solid color; they are an important cue for
reconstruction, restoration, and archaeological study.



Figure 9: Wireframe closeup of the original model (left), together with
the corresponding regularly-sampled ribbon (right).

the light relative to each pixel; in other words, the Ri act on the
calibration coefficient vector a. For each image i we may write

Ii = ρ(Ri a)T n , (2)

where ρ is the diffuse albedo. In matrix form, this expands to(
− (R1 a)T −
− (R2 a)T −

...

)(
ρnx
ρny
ρnz
ρ

)
=
( I1

I2
...

)
. (3)

Note that it is not possible to solve this problem as stated using
standard linear least squares, as the leftmost matrix in equation 3
(let us call it A) is singular: both its last and next-to-last columns
will be constant across all rows, because all of the Ri represent pla-
nar rotations that leave the z component unchanged. Instead, we
define the matrix Ã to be A with its fourth column removed, giving

Ã
(

ρnx
ρny
ρñz

)
=
( I1

I2
...

)
, (4)

where ñz = nz + a3 ρ/a2. Equation 4 can be solved using linear
least squares, and by adding the constraint that

n2
x + n2

y + n2
z = 1 , (5)

we are able to to solve for ρ, nx, ny, and nz.

Results The normal maps we recover have an order of magni-
tude higher resolution than our geometry, giving us the ability to
document, visualize, and analyze fine surface detail (Figure 7), in-
cluding hairline cracks, string impressions (Figure 8), plaster grain,
and impressions of reeds or other materials.

5 Matching

Among the many applications for detailed fragment models, one of
the most important is matching. Existing matching algorithms use a
variety of different cues — color and texture [Fornasier and Toniolo
2005; Sağiroğlu and Erçil 2006], contours [Kong and Kimia 2001;
Leitão and Stolfi 2002; Papaodysseus et al. 2002], and 3-D shape
[Huang et al. 2006] are some of the most common. All of these
algorithms can be performed on the data our system captures.

We have chosen to start with a 3-D shape-matching algorithm.
The reasons are twofold. First, archaeologists and conservators can
match fragments with decoration more easily than the many with
no decoration; color- and texture-based matchers therefore provide
less practical benefit. Second, matches are always verified by test-
ing if the fragments “lock” together — i.e. the 3-D edge geometry
is the most reliable matching cue. Matching fragments that lock
together are not necessarily erosion-free; as long as some part of
the matching interface is not eroded, there will be a snug fit.

Although we match based on 3-D edge geometry, we again take
advantage of the fragments’ flat front surfaces to limit our search
space to planar transformations. A brute-force approach is to select
a pair of points on the two fragments, compute an initial alignment
based on the points and their normals, run ICP (constrained to a pla-
nar transform) to recover a candidate matching alignment and error,
and repeat the process for points distributed around each fragment.

Figure 10: A strip of samples on each ribbon is used to compute a
candidate alignment. Then, the overlap region is shifted one sample
and a new alignment is computed incrementally in constant time.

Repeated ICP alignments, however, are slow (requiring, on av-
erage, 45 seconds per fragment on our test data set), and the ill-
constrained geometry produces instability in ICP. If many accurate
point pairs could be determined quickly, there would be no need to
iterate, and the process would be much faster. Eliminating iteration
from the alignment also resolves the stability problems.

Suppose we had a mesh of only a fragment’s edges, which we
call a “ribbon,” and these ribbons had regular sample spacing (Fig-
ure 9). Each ribbon vertex could be indexed by row and column,
so we could select a strip of samples of a fixed width on each
fragment, and ask whether they match. Now the correspondences
are completely determined by the regular sample structure, and all
that remains is to compute the alignment and associated error. The
overlap region is then shifted by a single sample, and the process is
repeated (Figure 10). This is similar to a 2-D convolution, and in-
deed each new alignment and error can be incrementally computed
from the previous one in constant time (see Appendix B for details).
The computational cost is therefore O(nm) where n and m are the
edge lengths of the two fragments. The ribbon matcher aligns a
pair of fragments in an average of two seconds, irrespective of the
fragments’ thicknesses and of the width of the matching strip.

Ribbon Construction We construct ribbons in two stages, as
shown in Figure 11. First we extract a contour 2 mm from the
front surface (to avoid erosion), placing samples every 0.25 mm
in arclength. We account for noise by smoothing the extracted
contour using a standard deviation of 2.5 mm, and reprojecting the
smoothed points back onto the fragment edge along their normals.
Next, we walk vertically from each contour point, adding samples
every 0.25 mm along the z-axis. We stop when we reach a face
pointing away from the contour point’s normal. This procedure
places isolated points on the fragment’s front and back surfaces,
which we prune by triangulating the ribbon and keeping only con-
nected components containing a contour point.

We must walk vertically from each contour point within a par-
ticular plane. As the edge advances and recedes from the contour
point, where we sample will depend on which plane we choose
(Figure 12). If two fragments match, but we chose to sample the
ribbons in different planes, we will not get good correspondences.
As a result, we may compute a poor alignment, obtaining a higher
associated error. To prevent this, we walk in the plane defined by
the contour’s smoothed normal and the z-axis.

Because each column of samples is constructed independently,
the ribbons may self-intersect. In practice this occurs rarely, and
in any case it does not affect matching: if one ribbon contains
self-intersections, any corresponding ribbons will contain the same
self-intersections, and all samples will be matched properly.

Erosion Detection Many fragments exhibit some erosion, espe-
cially near the back surface. In eroded areas, correspondences
assigned by the ribbon matcher will be wrong, leading to incor-
rect alignments (Figure 13). ICP eliminates poor correspondences
using a normal compatibility constraint — any correspondence in
which the normals are not nearly opposite each other is rejected.
That constraint requires an approximate initial alignment, but we
are able to use a weaker constraint that proves effective. Although a



Figure 11: To efficiently compute fragment matches, we regularly resample fragment edges into
a “ribbon.” A contour is extracted at a fixed offset from the front surface (left), then each sample
is extruded vertically in a plane defined by the contour point’s smoothed normal (center). Ribbon
points are arranged in a grid (right), allowing efficient computation of correspondences.

Figure 12: A ribbon, with profiles extracted
using smoothed and unsmoothed normals.
We use smoothed normals to ensure consis-
tency among fragments.

Figure 13: Using all corresponding point pairs on the red and blue
curves yields an incorrect alignment (left) because the black points are
on eroded portions of the edge. Using only the green points, whose nor-
mals’ z-components are opposing, yields a correct alignment (right).

point’s normal will be affected by the alignment, its z-component is
constant because the transformation is always planar. Therefore the
corresponding points’ normals should have opposite z-components
even before alignment. Specifically, we require that |nz + n′z| ≤ 0.5.
Significant erosion occurs mostly near the back surface, so normals
in eroded areas tend to point down on both fragments. Since they
are not opposing, they will be pruned.

Thickness Compatibility In general, matching fragments are the
same thickness. By counting the number of vertical positions along
corresponding columns where one ribbon contains a sample but the
other does not, we obtain an estimate of the difference in thickness
on a per-column basis. We apply a fixed penalty to each unmatched
sample beyond a fixed per-column threshold. Typically, we allow a
maximum difference of 4 mm (16 samples) in height between frag-
ments, and apply a penalty of 3 mm to each point exceeding the
threshold (i.e. each such point is counted as having an additional
3 mm of error when determining the final alignment error).

5.1 Matching Results

We have applied our matching algorithm to three test sets of frag-
ments acquired at the Akrotiri excavations from the wall painting of
spirals, as well as a “ground truth” fresco (which we call the syn-
thetic fresco), all prepared by the conservators to test our system.
The test sets contain some known matches found by the conserva-
tors, with the possibility that additional matches might exist. To test
the generality of our matching method, we also applied it to a set
of fragments from the Forma Urbis Romae [Koller et al. 2006], an
ancient marble map of Rome.

Number of Known Matches
Data Set Fragments Found/Total
Red fragments 134 2 / 2
Spiral fragments 44 6 / 7
White fragments 105 1 / 3
Synthetic (6.25 mm) 129 112 / 253
Synthetic (12.5 mm) 129 101 / 253
Synthetic (25 mm) 129 138 / 253
Synthetic (50 mm) 129 101 / 253
Synthetic (Combined) 129 175 / 253
Synthetic (ICP) 129 124 / 253

Table 1: Matches found on the wall painting data sets using the ribbon
and ICP matchers. We also found two additional matches among the
white fragments that were previously unknown.

Wall Painting Matching Results We ran the ribbon matcher on
all pairs of fragments within each test set, producing a list of can-
didate matches ordered by alignment error. The results are summa-
rized in Table 1. For the “real” fragments, we visually examined
the top matches, and sent images of the ones we believed could
be correct to the conservators for verification against the actual
fragments. We used a strip width of 25 mm. For the synthetic
fresco, we used strip widths of 6.25 mm, 12.5 mm, 25 mm, 50 mm,
as well as the combined results of all four strip widths. We ex-
amined the proposed alignment for each matching pair to see if it
was correct. Finally, we also tested the ICP matching approach
described above on the synthetic fresco. The ribbon matcher not
only finds more matches than the ICP matcher, it also ranks them
significantly higher in the list of candidate matches than does the
ICP matcher [Brown 2008], and is faster: an average of 2 seconds
per pair of fragments vs. 45 seconds for ICP matching.

The matches we found in the red, spiral, and white data sets are
shown in Figures 1, 15, and 16. These sets are drawn from the
lower, monochrome zone of the composition, the main spiral motif,
and the unpainted lime-plaster background, respectively. We also
show the entire synthetic fresco (of which the numbered fragments
have been scanned) in Figure 14; red lines indicate matches found
with a 25 mm strip width, while blue and green lines indicate the
additional matches found with 12.5 mm and 50 mm strip widths.

Forma Urbis Romae Our Forma Urbis test set contains eight
uninscribed fragments, for which edge geometry is the only defini-
tive matching cue. This set contains three representative matches,
all of which we found (Figure 17). We believe this indicates that
our algorithm can be practical in a broad range of contexts.

Forma Urbis fragments are thicker than our wall painting frag-
ments — about 5 cm thick — but because of erosion, matches usu-
ally occur along only a small portion of the edge’s height. We
therefore generated 15 mm-high ribbons at different depths along
the fragment edge, and matched each set of ribbons independently.
Also, because it is impossible to distinguish the front and back sur-
faces of uninscribed fragments (both sides are perfectly flat), we
included each fragment twice, rotated 180◦ with respect to each
other. We used a strip width of 25 mm.

6 Discussion and Future Work

Based on the results of our tests, we are planning a fixed installation
of our system at the excavations, to scan and match large numbers
of fragments. At the same time, there are several directions for
improving our system and expanding its range of applications.

Efficiency and Automation Relative to the effort of excavating,
stabilizing, and conserving each fragment, we believe our acqui-
sition speed of roughly 10 fragments per hour is a sufficiently
small incremental cost to be practical for documenting all excavated
items. We have therefore not pursued methods for further automat-
ing the scanning process, which would require custom hardware (at
significant extra cost) and provide little net benefit. We have also
retained the user in the processing loop, seeking only to make it suf-



Figure 14: The “ground truth” synthetic fresco. Red lines indicate matches found using
the ribbon matcher with a 25 mm strip width. Blue links indicate additional matches
found with a 12.5 mm strip width, and green links indicate further matches found with a
50 mm strip width. Only numbered fragments have been scanned.

Figure 15: The six matches from the spiral data set, found
with the ribbon matcher. The matcher considers only edge
geometry; the decoration’s continuity just confirms success.
(We did not find the match between fragments 170 and 174.)

Figure 16: The three matches from the white data set.

Figure 17: Matches in the Forma Urbis Romae test set.

ficiently robust that the required human time is, on average, seconds
per fragment (most of the manual effort arises during acquisition).

Generalizability We believe most components of our hardware
and processing setup are sufficiently general to be relevant in other
applications. The acquisition setup, with a flatbed color scanner
and a 3-D scanner oriented at 45 degrees relative to a motorized
turntable, is applicable in many contexts, provided that object size is
limited to a few tens of centimeters and high-resolution color is re-
quired only in flat regions. Our processing pipeline is also generic:
multi-way ICP is applicable whenever a turntable is used, as is
plane-fitting followed by constrained ICP whenever objects have
known-flat regions. While our ribbon-based incremental matcher is
most useful for reconstruction of fractured flat surfaces, wall paint-
ings and mosaics are common finds at archaeological sites, as are
incised and carved panels of wood, marble, or other stone material.

Nearly Flat Objects Our system relies on a flat front surface
for both 3-D alignment and normal reconstruction; although flat
surfaces are common, millimeter-scale deviations from the surface
plane are also common. The plane-fitting required for 3-D align-
ment is robust to these deviations, but they result in small image
misalignments, which show up as texture embossing when we com-
pute normals. Given the detail present in our 2-D scans, we believe
a non-rigid image registration or a shape-from-shading reconstruc-
tion should be possible, and is an interesting area for future work.

Multi-Cue Matching The data acquired by our system naturally
lend themselves to multi-cue matching. Although we have begun
with 3-D shape matching, conservators and archaeologists currently
consider many cues including the excavation context; texture, qual-
ity, and thickness of the plaster; pigment texture and brightness;
depicted motif and continuity of color, pattern and incisions be-
tween fragments; and the state of preservation of both front and
back surfaces. We are investigating intuitive interfaces for specify-
ing and evaluating multi-cue queries; we believe that this will allow
us to propose more relevant matches.
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A Multi-Way ICP Computation

The basic computation in multi-way ICP is solving for a rotation of
360/n degrees about some axis that minimizes point-to-plane dis-
tance between corresponding points. We first find an incremental
rigid-body transformation, apply it to the current transformation,
then coerce the result to be a rotation by 360/n degrees. We de-
compose the transformation into a rotation and translation:a d g j

b e h k
c f i l
0 0 0 1

→


axis = ( f − h, g− c, b− d)

angle = atan2(‖axis‖, a + e + i− 1)

t = ( j, k, l)

.

(6)
We then set

angle′ = 2π/n, t′ = t− axis (t · axis)
‖axis‖2 , (7)

and reconstruct the transformation using Rodrigues’s formula.

B Incremental Matching Details

Given two sets of corresponding points P and Q, we wish to find
the sum of squared distances between them under the optimal rigid-
body alignment T R. Defining the covariance matrix C as

C = ∑ p̃q̃T , where p̃ = p− p̄, q̃ = q− q̄, (8)

R = UV T where USV T is the singular value decomposition of C,
and T = p̄− Rq̄ [Arun et al. 1987].

In the ribbon matcher context, P and Q are strips from two rib-
bons A and B. Each time Q is shifted one sample around B, one
column of points is discarded from the beginning of Q, and a new
column is added to the end. For each corresponding column of A
and B, we precompute ∑ pq, ∑ p, and ∑ q. Using the relation

∑(x− x̄)(y− ȳ) = ∑ xy− x̄ ∑ y (9)

(the remaining terms in the expansion cancel, because ∑ x = ∑ x̄),
we generate the new covariance matrix and alignment.

The incremental error computation follows the same principle.
The mean squared error between P and Q is

E = ∑
i
‖q̃i − Rp̃i‖2 = ∑

i

(
‖q̃i‖2 + ‖Rp̃i‖2 + 2q̃i

TRp̃i
)
. (10)

Because R is a rotation matrix, ‖Rp̃i‖2 = ‖p̃i‖2. This gives

E = ∑
i
‖p̃i‖2 + ∑

i
‖q̃i‖2 − 2 ∑

i
q̃i

TRp̃i, (11)

in which the first two terms are easily precomputed (the mean is
subtracted from the sum using the identity from Equation 9). The
third term expands to

R00 p̃xq̃x + R01 p̃yq̃x + R10 p̃yq̃x + R11 p̃yq̃y = tr(RC). (12)

Note that a similar incremental computation could be applied to any
polynomial error metric, including point-to-plane.
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