Table 1: Properties of the presented algorithms, for row and column
processing of an h X w image with causal and anticausal recursive
filters of order r, assuming block-size b, and p SMs with c cores each.
For each algorithm, we show an estimate of the number of steps
required, the maximum number of parallel independent threads, and
the required memory bandwidth.

Alg. Step complexity Max. # of threads Bandwidth
RT hw 4 h, w 8hw

2 hw(gr44i(r?+r)) Fhw (94165 )hw
4 bu(gr+6i(r24r)) +hw (54 18%)hw
5 hw(sr+ 1(18r2+10r)) Fhw (3+22%)hw
SAT buig+32) 1hw 3+ %+ Z)hw

Recursive doubling [Stone 1973] is a well known strategy for first-
order recursive filter parallelization we can use to perform intra-
block computations. The idea maps well to GPU architectures, and
is related to the tree-reduction optimization employed by efficient
one-dimensional parallel scan algorithms [Sengupta et al. 2007;
Dotsenko et al. 2008; Merrill and Grimshaw 2009]. Using a block
size b that matches the number of processing cores c, the idea is to
break the computation into steps in which each entry is modified
by a different core. Using recursive doubling, computation of b
elements completes in O(log, b) steps.

The extension of recursive doubling to higher-order recursive filters
has been described by Kooge and Stone [1973]. The key idea is
to group input and output elements into r-vectors and consider
equation (1) in the matrix form of (52) in appendix A. Since the
algebraic structure of this form is the same as that of a first-order
filter, the same recursive doubling structure can be reused.

8 Results

Table 1 summarizes the main characteristics of all the algorithms that
we evaluated, in terms of number of required steps, the progression
in parallelism, and the reduction in memory bandwidth.

Our test hardware consisted of an NVIDIA GTX 480 with 1.5GB
of RAM (480 CUDA cores, p = 15 SMs, ¢ = 32 cores/SM). All
algorithms were implemented in C for CUDA, under CUDA 4.0. All
our experiments ran on single-channel 32-bit floating-point images.
Image sizes ranged from 642 to 40967 pixels, in 64-pixel increments.
Measurements were repeated 100 times to reduce variation. Note
that small images are solved in sequence, not in batches that could
be processed independently for added parallelism and performance.

First-order filters As an example of combined row-column
causal-anticausal first-order filter, we solve the bicubic B-spline
interpolation problem (see also figure 7(top)). Algorithm RT is the
original implementation by Ruijters and Thévenaz [2010] (avail-
able on-line). Algorithm 2 adds blocking for memory coalescing,
inter-block parallelism, and kernel fusion. (Algorithms 1 and 3 work
on 1D input and are omitted from our tests.) Algorithm 4 employs
overlapped causal-anticausal processing and fused row-column pro-
cessing. Finally, algorithm 5 is fully overlapped. Performance num-
bers in figure 4(top) show the progression in throughput described
throughout the text. As an example, the throughput of algorithm 5
solving the bicubic B-spline interpolation problem for 10242 images
is 4.7GiP/s (gibi-pixels per second). Each image is transformed in
just 0.21ms or equivalently at more than 4800fps. The algorithm
appears to be compute-bound. Eliminating computation and keeping
data movements, algorithm 5 attains 13GiP/s (152GB/s) on large
images, whereas with computation it reaches 6GiP/s (72GB/s).

2D Bicubic B-spline Interpolation

7 ; ; . : .
500 _ i
z 4t RT i
3T
=
g2t .
=
E oL 1
64° 1282 2562 5122 1024> 20482 40962
Input size (pixels)
2D Biquintic B-spline Interpolation
5 . : : : .

— 4,
g 4+ — 2x5 §
= —_— 52
2
2 F
=
2
E 1}

64* 1282 2562 5122 10242 20482 40962
Input size (pixels)

Figure 4: Throughput of the various algorithms for row-column
causal-anticausal recursive filtering. (Top plot) First-order filter
(e.g. bicubic B-spline interpolation). (Bottom plot) Second-order
filter (e.g. biquintic B-spline interpolation).

Second-order filters The second-order, causal-anticausal, row-
column separable recursive filter used in our tests solves the biquintic
B-spline interpolation problem. Figure 4(bottom) compares three
alternative structures: 2x5; is a cascaded implementation using
two fused fully-overlapped passes of first-order algorithm 5, 4, is a
direct second-order implementation of algorithm 4, and 5, is a direct
fully-overlapped second-order implementation of algorithm 5. Our
implementation of 4, is the fastest, despite using more bandwidth
than 5,. The higher complexity of second-order equations slows
down stages 5.4 and 5.5 substantially. We believe this is an
optimization issue that may be resolved with a future hardware,
compiler, or implementation. Until then, the best alternative is to
use the simpler and faster 4,. It runs at 3.1GiP/s for 10242 images,
processing each image in less than 0.32ms, or equivalently at more
than 3200fps.

Precision A useful measure of numerical precision in the solution
of a linear system such as the bicubic B-spline interpolation problem
is the relative residual. Using random input images with entries in
the interval [0, 1], the relative residual was less than 2 x 10~7 for
all algorithms and for all image sizes.

Summed-area tables Our overlapped summed-area table algo-
rithm was compared with the algorithm of Harris et al. [2008] im-
plemented in the CUDPP library [2011], and with the multi-wave
method of Hensley [2010]. We also compare against a version of
Hensley’s method improved by two new optimizations: fusion of
processing across rows and columns, and storage of just “carries”
(e.g. Pm.n(Y)) between intermediate stages to reduce bandwidth.
As expected, the results in figure 5 confirm that our specialized
overlapped summed-area table algorithm outperforms the others.

Recursive Gaussian filters As mentioned in section 1, Gaussian
filters of wide support are well approximated by recursive filters (see
also figure 7(bottom)). To that end, we implemented the third-order



