Online Submission ID: 0524

L

Quadratic

Linear Cubic
Figure 3: Implicit representation for abstract segments. The figure
shows the top-right configuration of figure 2. Other configurations
are analogous.

Linear segments Letvectors = [s, s, 1] " hold the homo-
geneous coordinates of the sample. The equation for line Lo L; can
be written in the form ks = 0 for an affine function (i.e., a row
vector) k = [a b ¢]. Itis easy to pick k such that ks > 0 for
samples to the left of LoL1. We use this implicit line test to decide
on which side of a linear segment each sample lies.

Loop and Blinn [2005] gave a neat procedure for generalizing this 3

implicit test for quadratic and cubic Béziers. They use a result
by Salmon [1852] that ensures it is always possible to find affine
functions k, £, m such that the implicit tests become

integral quadratic: (ks)® >1s)
rational quadratic: (k s)® > (Is)(m s) (10)
integral cubic: (ks)® > (Is)(ms). (11)

Each abstract segment stores the row vectors corresponding to the
required affine functions, and use them to quickly perform implicit
tests on the required samples. Unfortunately, monotonization is not
enough to guarantee the correctness of the implicit test inside the
entire bounding box.

Quadratic segments Consider the quadratic in figure 3. The
quadratic could reenter triangle Q2 BoQo (shaded in light blue) af-
ter leaving the bounding box. This would lead to the wrong clas-
sification of sample points. Loop and Blinn [2005] use the GPU
rasterizer to generate fragments only inside triangle QoQ1Q2. This
would require 3 additional implicit line tests. Instead, it is sufficient
to restrict the test to triangle Qo B1 @2, using the bounding box and
a single implicit test against segment Qo Q2.

Proof: The quadratic cannot cross segment Q@2 outside of
points Qo and (1 since it can intersect a straight line at most twice.
Similarly, it cannot cross segments Qo Q1 and Q1Q)2. Indeed, since
the curve is tangent at both Q¢ and)2, these points already count as
two intersections. Finally, note the quadratic cannot intersect seg-
ments Qo B1 and B; Q)2 without first incurring forbidden additional
intersections with segment Qo Q1 or Q1 Q2.

Cubic segments Cubics are more complicated. To prevent the
curve from looping back and intersecting segment CoC'3 (and the
curve itself), Loop and Blinn [2005] split cubics at a double-point
whenever one is found for ¢4 with 0 < t4 < 1. This requires solving
a simple quadratic equation, and we do the same. The test is now
valid inside the convex-hull of the control polygon (Loop and Blinn
[2005] rasterize two triangles to generate the appropriate pixels). In
our case, this would require at least four implicit line tests and some
book keeping. Instead, we split the cubics at an inflection point
whenever one is found for ¢; with 0 < ¢; < 1. This requires solving
a simple quadratic but guarantees the control polygon is convex,
and therefore the intersection of lines CoC and C'2C'3 happens at
a point C inside the bounding box. It is sufficient to restrict the
implicit test to the triangle CoC'C's.

Proof: We again use root-counting arguments. First, we show the
curve cannot intersect segment CpC's. If it did, it would either have

w
&
&

Figure 4: The segments in each path are classified and decom-
posed into monotonic abstract segments. Abstract segments can
be queried for their bounding box, their orientation (NE,NW,SE,SW),
and for the side on which a sample lies.

to exit triangle Co C'C'3 again through segment CoC's (but it cannot
have 4 intersections with line CyC'3), or would have to self-intersect
(but by assumption it has no double-point for ¢ € (0, 1)). The argu-
ments for why the curve cannot intersect segment CoC and C'C'3 are
analogous, so consider segment CoC'. We start from the part of the
curve that exits triangle Co C'C's at Cy. Ifitis below CoC, then Cy is
an inflection and exhausts all 3 possible intersections with line CoC'.
If it is above CoC, then Cj is only a tangent. Now recall the curve
cannot intersect CpC's. Therefore, in order to intersect CoC' a third
time, it would have to either go up around triangle CoC'Cs, thereby
intersecting C'C'3 four times (twice at the tangent C's and twice be-
fore it can reach CyC), or go down back into CyC' (wasting the
third and last intersection with line CoC' at a point outside of seg-
ment CoC). Now consider the part of the curve exiting at Cs. If it
exits to the right of C'C', then Cf is an inflection and precludes the
fourth intersection with line C'C'3, needed to reach segment CoC'. If
it exits to the left, it would intersect line CoC' the third time outside
of segment CoC, since it cannot intersect segment CoC'3.

In the remainder of the paper, we assume that all segments have
been previously monotonized and we manipulate them as abstract
entities. These abstract segments can be queried for a bounding
box, for an orientation (NE,NW,SE,SW), and for the side on which a
given sample lies. Figure 4 illustrates the decomposition of a filled
primitive into its abstract segments.

4 The shortcut tree

Assume we have partitioned the illustration area into a union of
small regions. The key strategy for speeding up the inside-outside
test within each region is to cull segments that can never be inter-
sected by rays originating from the region in the +z direction. It
is immediately clear that we can eliminate an entire segment when-
ever its bounding box is completely above, below, or to the left of
the window. The additional insight from the work of Nehab and
Hoppe [2008] is that we need only include the segments that actually
intersect the window. Their lattice-clipping algorithm generates a
regular grid of cells, each containing only the parts of segments that
overlap with them. In addition to the clipped segments, Nehab and
Hoppe include winding increments and auxiliary segments that en-
sure the correct number of intersections is computed for any sample
inside each cell. These are the shortcuts in our shortcut tree. We
improve on that idea by considering all segments in parallel and by
creating an adaptive tree structure rather than a regular grid. Fur-
thermore, we include complete segments into the cells, rather than
cutting segments into pieces. This allows us to avoid computing
expensive intersections between segments and cell boundaries, and
reduces the total number of primitives in the tree.

