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Abstract
Warping techniques can be complicated and difficult to use, but through the use of fluid dynamics the warping
becomes simple and it is intuitively controlled by physical properties such as viscosity and forces. These properties
are naturally associated with the image itself or with spatial control handles. The key idea is to think of the image
domain as a two-dimensional incompressible and homogeneous fluid, and to use the Navier Stokes equations
to change it by applying forces to the image function. In this way, the process does not move the image values
as in fluid simulations, but transforms the coordinates of a parametrization of the image through a vector field
generated by the simulation equations — effectively acting as a texture mapping. The contribution of this work is
a new method for image warping based on fluid simulation.

1. Introduction

The process that changes the shape of objects in an image is
called warping. The use of warping plays an important role
in many applications, from the correction image distortions
in medical data to the creation of special effects in the enter-
tainment industry. Warping can also be used together with
blending for creating transitions between different objects, a
technique known as morphing [GV97].

More formally, given an image, f : U ⊂ R
2 → C, the

mapping between source space (u,v) and destination space
(x,y) is called warping filter. Such a map, W ( f ) = g, acts
on the input image f (u,v) giving rise to an output image
g(x,y) that can be regarded as a deformation of the image
domain [Hec89]. Furthermore, in the case of morphing, a
composition operator combines the result of two synchro-
nized warping filters applied to different images.

Spatial transformations based on Navier-Stokes equa-
tions, and the use of fluid dynamics in general, present a
great potential in the above context because they are very
powerful to derive warping transformations. In the present
paper we develop a framework where such a technique is
exploited.

2. Related Work

There are many methods for image warping. They can be
classified into: parameter-based; feature-based; free-form;
and hybrid [GDCV99].

Parameter-based methods are warping techniques con-
trolled by a family of transformations, such as scaling, twist-
ing, and bending. This type of technique was introduced in
Computer Graphics by Alan Barr [Bar84].

Feature-based methods encompass a whole class of warp-
ing techniques, which differ regarding types of geometric
features and reconstruction functions. In these methods a
correspondence of features in the source and destination ob-
jects must be provided by the user. Typical reconstruction
functions include scattered data interpolation, inverse dis-
tance weighted kernels,and radial basis [AR95]. An efficient
warping technique, based on feature vectors, was introduced
by T. Beier and S. Neely [BN92].

Free-form based methods use specification by coordinate
systems. For this purpose, they employ free-form curves (B-
splines, Bézier etc.) to define the coordinate curves [BJ03].
These techniques was introduced by Smith [Smi87], devel-
oped by Smithe [Smi90] and described in Wolberg [Wol94].

The pioneer work using fluid dynamics in image pro-
cessing was introduced by Bertalmio et al. [BBS01], with
a method for digital inpainting. They think of the image in-
tensity as a stream function and the Laplacian of the image
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intensity plays the role of the vorticity of the fluid, which is
transported into the region to be inpainted by a vector field
defined by the stream function. Even though their idea is
based on Navier-Stokes equations, our work is different. In
our technique, the fluid warping uses a vector field directly
created by the velocity of fluid by Navier-Stokes equations:
we neither use the stream function nor vorticity.

The proposed fluid warping technique carries the coordi-
nates of a parametrization of the image through of a vector
field generated by the Navier-Stokes equations. Warping is
controlled by physical parameters associated with the char-
acteristics of the image itself or by other auxiliary images
and applied to the dynamic simulation.

Depending on the application (for example in those al-
ready mentioned above) an important aspect of fluid warping
is user control. Deformations are easy to specify using fluid
dynamics through physical properties, such as viscosity and
forces.

3. Fluid Simulation

In this section we present the fluid simulation setting that
will be adopted in our framework for image warping. We are
interested in modeling homogeneous, incompressible fluids
with variable viscosity. Such formulation gives a good com-
promise between simplicity and expressive power. More-
over, we require an efficient implementation, that allows
large time-steps, for this purpose we will employ the Stable
Fluids algorithm, extending it to handle variable viscosity.

3.1. Mathematical Formulation

First we review some mathematical concepts for the defini-
tion of the fluid equations. The fluid is defined over a region
D ∈ R2. Let x = (x,y) be any point of D. Let v(x, t) denote
the velocity of the particle of fluid moving through x at time
t. The velocity field of fluid is denoted by v and it is a vector
field tangent to the trajectory of the particle. For each time
t assume that the fluid has mass density ρ(x, t). The fluid is
called incompressible when

∇· v = 0.

Assuming that the fluid has mass density constant in space
(i.e., the fluid is homogeneous) and that ρ is constant in time.
Then we have

ρ(x, t) = constant in particular ρ(x, t) = 1.

Let µ be the viscosity of fluid and p the pressure. Then for
constant viscosity, the basic Navier-Stokes equations for in-
compressible fluids are: (see [CM93] and [Nac06])

∂tv = −�p− v ·�v+µ� v+ f

∇· v = 0.

(1)

where the "·" denotes a dot product between vectors, while

� = (∂/∂x,∂/∂y) is the vector of spatial partial derivatives,
∂t is the partial derivative ∂

∂t
, and �· is the divergent. We also

adopt the notation �= � ·�.

For more expressivity, we want to consider changes of vis-
cosity in space and thus we have to formulate the Navier-
Stokes equations for variable viscosity. The equations are:

∂t = −�p− v ·�v

+�µ(x)(�v+�v�)+µ(x)� v

+ f

(2)

Where �v =
(

∂xv1 ∂yv1

∂xv2 ∂yv2

)
and �v� =

(
∂xv1 ∂xv2

∂yv1 ∂yv2

)
then

�v+�v� =
(

2∂xv1 ∂xv2 + ∂yv1

∂yv1 + ∂xv2 2∂yv2

)
.

We will use the Helmholtz-Hodge Decomposition theorem,
where a vector field w on D can be uniquely decomposed in
the form

w = u+�q

such that u has zero divergence and q is a scalar field. If we
have w = u+�p, then

� ·w = � ·�q =� q, and w ·n = �q ·n = ∂q
∂n = 0.

This is a Poisson equation for a scalar field with the Neu-
mann boundary conditions. A solution to this equation can
be used to compute u:

u = w−�q.

Now we define the operator P which projects any vector
field w onto its divergence free part u: � ·u = 0 and Pw = u
(see [Sta99] and [CM93]). P is a linear operator and thus
w = Pw + �p, u = Pu, P(�p) = 0. We apply the operator
P to both sides of the basic Navier-Stokes equations (1) and
obtain

∂t v = P(∂tv+�p) = P(−(v ·�)v+µ � v+ f ). (3)

This form of equation eliminates the pressure and expresses
∂tv in terms of v alone. The pressure can then be recovered
as the gradient part of −(v ·�)v+µ � v+ f . In the same way,
we obtain for the variable viscosity Navier-Stokes equation
(2)

∂t v =

P(−(v ·�)v+�µ(x)(�v+�v�)+ µ(x) � v+ f ).

(4)
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3.2. Computational Method

Now we briefly review the Stable Fluids algorithm that we
adopt for the implementation of the fluid simulation. For fur-
ther details we refer to the papers [Sta99] and [Sta03].
Since the algorithm was designed for fluids with constant
viscosity, we adapt it for our setting by developing an exten-
sion for variable viscosity fluids. The algorithm solves the
Navier-Stokes equations (1) and it is unconditionally stable.
This method is based on an operator splitting strategy. For
each time step �t the algorithm solves the equations in four
stages, starting from a velocity field w0 = v(x, t) of a previ-
ous time step and then sequentially resolving each term of
the equations. The stages are

w0
add force−−−−−→ w1

advect−−−−→ w2
diffuse−−−−−→ w3

project−−−−−→ w4

The first stage is the addition of external force f . It adds
the force field multiplied by the time step to velocity w1 =
w0 +�t f (x, t).

The second stage accounts for the effect of advection of
the fluid on itself. It is given by an advection equation

∂tw2 = −(w1 ·�)w2

and is solved by using a semi-Lagrangian technique [CIR53]

w2(x) = w1(x−�tw1(x)).

The basic idea behind the advection step is, instead of mov-
ing the particle forward in time through the velocity field, to
move it backwards in time through the field and calculate a
new velocity by interpolation (guaranteeing stability).

The third stage solves for the effect of viscosity and is
given by equation

∂tw3 = µ � w3

it uses a simple implicit solver for the diffusion equation

(I− � tµ �)w3 = w2

where I is the identity operator. One way to solve this equa-
tion is to get the solution for system

Aw3 = w2

by using the Jacobi method.

The fourth stage projects the velocity field onto the in-
compressible (divergence free) field. This step also involves
the solution of a Poisson equation

� q = � ·w3 and w4 = w3 −�q.

The methods used for solving this stage are finite difference
schemes and Jacobi.

We will extend the formulation above to solve our equa-
tion (2) using the same stages, except that because we as-
sume variable viscosity the diffusion stage will be different.
More precisely, the original Stable Fluids solve the equation

∂tw3 = µ � w3

and we have to solve the equation

∂tw3 = �µ(x)(�w3 +�w3
�)+µ(x) � w3.

To solve this step, let w3 = (w1,w2) and we write again in
this form{

w1
t = 2µxw1

x +µy(w1
y +w2

x)+µ � w1

w2
t = 2µyw2

y +µx(w1
y +w2

x)+µ � w2.

where the sub-indices t,x and y denote the partial derivatives
∂t ,∂x and ∂y. And we discretize again using implicit differ-
ence schemes backward in time and central space to w3 and
central space scheme to µ [Str99]. The results are stable,
just as we wanted. The discretization of these equations is
given in Appendix A. Once again time we have used Jacobi
to solve this modified stage.

The Stable Fluids also includes a method to compute the
motion of a density ϕ immersed in the fluid. The equation
for the evolution of this density is

∂tϕ = −(v ·�)ϕ +κ�ϕ +S (5)

where κ is a diffusion rate and S is a source of density. The
density is advected by the fluid using a semi-Lagrangian
technique, as in the second stage of the algorithm.

4. Warping with Fluids

The first idea to use fluids for image warping would be to
consider the image as a density field immersed in the fluid,
and as such could be transported by fluid motion. However,
as can be seen in Figure 1 this approach does not work well.

(a) Image (b) Forces (c) T = t2

(d) T = t2

Figure 1: Image warping with fluids.

For this experiment we used the source image in Figure 1a
and the force field in Figure 1b. We performed a fluid sim-
ulation using these external forces, and then applied the re-
sulting velocity field to the image in two ways.

First, we treated the image intensity as density values im-
mersed in the fluid and computed the motion of the image
function using equation (5), which moves the grey level val-
ues of the image directly. The result is a blurred image and
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Figure 2: Texture Warping Image coordinates p1 and p2
carried by vector field generated by the Navier Stokes equa-
tions

a fast disappearance of the image after applying additional
forces, as shown in Figure 1c.This phenomenon happens be-
cause of the intrinsic dissipation of the fluid equation.

The best strategy to avoid the above problem is to move
through the fluid velocity field, instead of image values, the
coordinates of a parametrization of the image. In this way,
the image features are preserved by a texture mapping mech-
anism, as shown in Figure 1d.

4.1. Texture Mapping and Warping

Based on the conclusions of the previous experiment, the
image warping using fluid simulation can be formalized as a
deformation induced on a texture.

Let [0,M]× [0,N] be the image domain. Given a force ap-
plied to the image domain, we regard a fluid in [0,M]× [0,N]
and move this fluid taking external forces as initial data. For
point (x,y) in the image domain, the coordinates are trans-
ported to point (p1, p2) in [0,1]× [0,1] by parametrization p.
Now, each coordinate p1 and p2 is interpreted as a density
immersed in the fluid on [0,M]× [0,N]. We move each co-
ordinate separately through the fluid velocity field, by equa-
tion (5) getting for a time step �t the coordinates q1 and q2.
Finally, for a point (x,y) on domain of a new image the value
is computed as follows. If (q1,q2) belongs to [0,1]× [0,1],
then it is transported by the inverse parametrization at the
point (w, z) of [0,M]× [0,N]. The value of the new image
at point (x,y) is the value of the original image at (w, z). If
(q1,q2) do not belong to [0,1]× [0,1] then the value of (x,y)
is zero. This computational scheme for fluid warping using
texture mapping is illustrated in the diagram of Figure 2.

The warping function induced by the velocity field of

a fluid simulation has many desirable properties, such as
smoothness and continuity, that can be exploited in appli-
cations. Additionally, the mapping is naturally time depen-
dent, such that given the initial conditions (i.e., forces and
parameters) at time t = 0, we have a one-parameter family
of warpings Wt , t ∈ R+, which directly applies for anima-
tion, and may also be interpreted in terms of evolution.

4.2. Control Mechanisms

Fluid simulation is capable of producing potentially very
complex deformations with good properties for image warp-
ing, as we have discussed so far. However, in order to be use-
ful, we need to be able to control the simulation such that the
desired transformation is obtained. The simplest way to con-
trol the fluid warping is through the direct specification of
the simulation parameters. By inspection of the fluid equa-
tions (2) is easy to verify that the available parameters are:

• external forces f (x, t); and
• fluid viscosity µ(x).

An extra parameter is the total duration T of the simulation.

Surprisingly, just this small set of parameters already pro-
vide powerful and intuitive mechanisms for controlling the
image warping.

First, note that both the forces and viscosity are spatially
variable. Thus, they are identified with functions on the im-
age domain which could be associated with image features.
Therefore, one natural way to specify forces and viscosity is
by auxiliary images.

We define the viscosity from the intensity of an auxiliary
image function on [0,M]× [0,N]. The viscosity values are
computed from a normalization of the image values to [0,1]
and global scaling factor. While the viscosity is defined by
a scalar field, forces are defined by a vector field, which can
be encoded as an RGB image. However, in many situations
it is also convenient to specify forces from point or curve
sources. For this we employ procedural definitions.

Furthermore, for specification purposes it is convenient to
take the total external force f = ∑ fi, as the additive com-
bination of separate individual forces fi. Since forces vary
in time too, we must take this fact into consideration for the
definition of forces. More specifically, useful options are: 1)
instantaneous forces (i.e., acting at specific time instants ti,
i = 1, . . . ,N) In this case, it is common to use initial forces
at t = 0; 2) constant forces (i.e., acting during a certain
time interval [t0, t1]; 3) arbitrary forces (i.e., fully variable in
time). Also, the application of forces may be defined a pri-
ory or may depend on a sensing function on the simulation.
This second option is related to the so-called force-feedback
mechanism of control theory. Up to now, we have adopted
only basic specification of forces, such as instantaneous and
constant force fields. We have also made use of a simple
sensing mechanism, mainly for stopping the simulation.
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5. Results

In this section we give some examples of the results that can
be obtained with fluid warping.

The first set of examples demonstrate the use of forces and
viscosity to control image deformations.

Figure 3 shows a warping of a train leaving the station,
defined only by an instantaneous force at t = 0 along a curve
on the top part of the image. The goal was to get a time-space
distortion effect suggesting speed. Note that we are able to
create extreme distortions just by running the simulation for
a longer period.

Figure 4 exhibits a warping of a Van Gogh’s painting, de-
fined by forces and variable viscosity. Here, we generated
forces from the gradient of a segmentation of the hat and the
viscosity from a quantization of the image values. Note that
the forces act to expand the hat and, because the surround-
ing background has variable viscosity, the hat deforms in a
non-uniform way.

The second set of examples is an attempt to evaluate fluid
warping as a regular warping technique. For this purpose, we
make a comparison using examples from the paper of Arad
et al [AR95]. In this seminal work, the authors describe a
technique based on radial basis functions.

Figure 5 is an example in [AR95] for lifting the corner of a
girl’s mouth. To achieve this effect we constructed a viscos-
ity function, shown in Figure 5b, that imposes a restriction
on the warping area. In this function, the region outside the
desired warping is white and more viscous (i.e., opposing
great resistance to fluid motion). The warping area is dark
and less viscous (i.e., offering small resistance to fluid mo-
tion). The forces used in the process are given by the gradient
field of the image shown in Figure 5c. They exert an upward
force at the mouth location, producing the desired effect. The
results in Figures 5d and 5e demonstrate that we are able
to closely match their technique. A similar performance is
achieved in the example of Figure 6.

6. Conclusions

In this paper we introduced fluid warping, a framework for
image deformation using fluid dynamics. Our technique pro-
vides good results and is simple to use. Future work includes
two avenues of investigation. One direction is towards a finer
and more precise control of the warping transformation. This
can be achieved by exploiting sophisticated force-feedback
mechanisms, possibly combined with an optimization strat-
egy. Another direction is to extend the framework for image
morphing. In this context, the coupling of two parallel fluid
simulations could be considered together with a composition
operator for image blending. Ideally, such an operator should
be physically inspired.
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Appendix A: Discretization for Variable Viscosity

In this appendix we provide the discretization of the diffu-
sion stage of the simulation, given by the equations below:

{
ut = 2µxux +µy(uy + vx)+µ � u

vt = 2µyvy +µx(uy + vx)+µ � v.

The derivation is obtained by a finite difference scheme. We
assume that the grid spacing is h = 1/N.

un+1
m,l − un

m,l

� t
=

2µx

[
un+1

m+1,l − un+1
m−1,l

2h

]
+

µy

[
un+1

m,l+1 − un+1
m,l−1

2h
+

vn+1
m+1,l − vn+1

m−1,l

2h

]
+

µ

[
un+1

m−1,l + un+1
m+1,l + un+1

m,l−1 + un+1
m,l+1 − 4un+1

m+1,l − 4un+1
m,l

h2

]

And then we have

un+1
m,l +

4 � tµ

h2
un+1

m,l =

2 � tµx

[
un+1

m+1,l − un+1
m−1,l

2h

]
+

� tµy

[
un+1

m,l+1 − un+1
m,l−1

2h
+

vn+1
m+1,l − vn+1

m−1,l

2h

]
+

� tµ

[
un+1

m−1,l + un+1
m+1,l + un+1

m,l−1 + un+1
m,l+1 − 4un+1

m+1,l

h2

]
+ un

m,l

un+1
m,l = 1

1+4µ�t

{
un

m,l +
�tµ
h2

(
un+1

m+1,l + un+1
m−1,l + un+1

m,l+1 + un+1
m,l−1

)

µx�t
n

[
un+1

m+1,l − un+1
m−1,l

]
+

�tµy
2h

[
un+1

m,l+1 − un+1
m,l−1 + vn+1

m+1,l − vn+1
m−1,l

]}

And finally in the same way we obtain the discretization of
vt

vn+1
m,l = 1

1+4µ�t

{
vn

m,l + �tµ
h2

(
vn+1

m+1,l + vn+1
m−1,l + vn+1

m,l+1 + vn+1
m,l−1

)

µy�t
n

[
vn+1

m,l+1 − vn+1
m,l−1

]
+

�tµx
2h

[
un+1

m,l+1 − un+1
m,l−1 + vn+1

m+1,l − vn+1
m−1,l

]}
.
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(a) Original Image (b) Velocity field at t = 0

(c) Image warping at t1 (d) Image warping at tn

Figure 3: Train warping.

(a) Original image. (b) Image at t3

(c) Gradient field. (d) quantization for viscosity

Figure 4: Melting the Van Gogh hat.
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(a) Original image. (b) Viscosity function (c) Edges for force field.

(d) Fluid Warping (e) Result of Arad et al. [AR95]

Figure 5: Comparison with example in Arad et al. [AR95]

(a) Original image. (b) Fluid Warping (c) Result of Arad et al [AR95]

Figure 6: Comparison with example in Arad et al. [AR95] -Note a small difference in the eye.
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