
Guitar-Leading Band:
Implementation Details

M. Cicconet
Visgraf/IMPA

L. Velho
Visgraf/IMPA

P. Carvalho
Visgraf/IMPA

G. Cabral
D’Accord Music Software

Figure 1: Capture hardware. On the left, an infrared camera surrounded by four infrared light sources. In the center, a hollow disk made
with reflexive material. Four of them are used to locate the plane containing the ROI. On the right, middle-phalanges gloves with small rods
coated so as to easily reflect light.

1 Video-Based Chord Recognition

We describe in this section the details of the guitar chord detec-
tion method based on the “visual shapes” of the chords, which are
learned by a supervised Machine Learning method.

Let us define the Region of Interest (ROI) in the scene of a person
playing guitar as being the region including the strings, from the
nut to the bridge.

To facilitate the capture process, avoiding the overhead of segment-
ing the ROI, we chose to work in the infrared-light range.

Figure 1 shows the equipment that supports our method. We use a
infrared camera to capture the scene, which is properly illuminated
with infrared light. Special markers (fiducials) are attached to the
guitar in order to easily locate the instrument, and for the fingers,
reflexive gloves dress the middle phalanges.

The pipeline of our chord detection method is illustrated in Fig-
ure 2. The developed software takes advantage of some nice and
robust algorithms implemented in OpenCV, an open source Com-
puter Vision library [Bradski and Kaehler 2008].

First, a threshold is applied to the input image, so that the only non-
null pixels are those of the guitar and finger markers. Then, using
the contour detection algorithm and contour data structure provided
by OpenCV, guitar and finger markers can be separated. Note that
guitar fiducials and finger markers are, respectively, contours with
and without a hole. Once the positions of the four guitar fiducials
are known in the image, by using their actual positions in guitar
fingerboard coordinates a projective transformation (homography)
can be determined and applied in order to “immobilize” the gui-
tar and easily extract the ROI. This homography is then applied to
the north-most extreme of the finger rods, so we get the rough po-
sition of fingertips in guitar fretboard coordinates, since the distal
phalanges are, in general, nearly perpendicular to the fingerboard.

We use a supervised Machine Learning technique to train the ma-
chine with the guitar chords we want it to identify. The chord a mu-
sician plays is viewed by the system as an eight-dimensional vector
composed by the coordinates (after projective transformation) of
the four fingertips, from the little to the index finger. We call this

eight-dimensional vector the Visual Pitch Class Profile (VPCP), in
analogy with an audio descriptor commonly used for chord recog-
nition (the Pitch Class Profile [Fujishima 1999]).

Summarizing, the proposed algorithm for real-time guitar chord de-
tection has two phases. In the first (the training phase), the mu-
sician chooses the chords that must be identified and takes some
samples from each one of them, where by sample we mean the
eight-dimensional vector formed with the positions of the north-
most extreme of the finger rods, i.e., the VPCP. In the second (the
identification phase), the system receives the vector corresponding
to the chord to be identified and classifies it using the K Nearest
Neighbor algorithm.

2 Automatic Composition

In this section we present the algorithm to generate music sam-
ples and the related probabilistic tools. In nutshell, a random sam-
ple of music is built using a Markov Chain conditioned to certain
events. We have chosen to organize a music piece in cycles, bars
and beats; and picked the major diatonic scale for the melody, since
it is largely used in pop songs. Figure 3-top shows part of the di-
atonic scale notes as arranged on the guitar fretboard. Such an ar-
rangement of notes is not algorithmically friendly. So we decided
to use the representation shown in Figure 3-bottom.

The finite Markov Chain state-space is defined as E = R × M .
First, R is the space of rhythmic patterns. We have used five dif-
ferent states, corresponding to silence (rest), one whole, two halfs,
three thirds and four quarter notes. Second, M is the space of pos-
sible notes, namely, the scale, whose states are the points of the
matrix shown in Figure 3-bottom.

Each time a new beat is about to begin, a rhythmic pattern is sam-
pled, depending on the current value of the parameter describing
the “level of intensity” for the music. The greater the intensity, the
greater the probability of playing more musical notes in the next
beat. Once the rhythmic pattern is chosen, the melodic line is built.
It is controlled by two independent Markov processes, one for the
rows and the other for the columns of the musical notes, according
to the representation of the diatonic scale shown in Figure 3.



Figure 2: Chord detection pipeline, from top to bottom. (1) A
threshold is applied to take only guitar and finger markers. (2)
Guitar fiducials and finger rods are detected using a contour detec-
tion algorithm. (3) A projective transformation “immobilize” the
guitar, regardless the movement caused by the musician. (4) The
projective transform is applied to the north-most extreme of finger
roads in order to roughly locate the fingertips in guitar-fretboard
coordinates.

The conditioning on specific events mimics the behavior of a mu-
sician, who, when improvising, pursues a target note in meaningful
chords. That is what can be called the target-note improvisation
paradigm. As an example, the system may check if the first note
of the sequence chosen for the beat is the same, regardless the oc-
tave, of the current chord’s root note. Furthermore, the system may
impose that the last note of the sequence should fall in some re-
gion of the matrix of musical notes. That region, for its turn, could
be controlled by the location of the guitarist left hand in the guitar
fretboard.

Let now A be the set of sequences which satisfy the just described
restrictions. The method to simulate the conditioning of the Markov
Chain on A is known as the Rejection Method, which consists sim-
ply in sampling a Markov Chain, and if the sample belongs to the
set A, keeping it. If not, we resample until we get an allowed sam-
ple. Theoretically, the number of trials until an allowed sample to
be obtained can be arbitrarily large. For this reason, we limited
the number of trials. If no allowed sample is found, the last one is
chosen. Of course doing this we do not simulate exactly the con-
ditioned Markov Chain defined above. Nevertheless, this way the

Figure 3: Arrangement of notes from the diatonic scale in the gui-
tar fretboard (top) and its representation as we have used to build
the automatic composition algorithm (bottom).

algorithm imitates musician’s errors, when the target note is not
reached, something that can eventually happen.

We have used the uniform distribution as initial distribution of the
sequences for rhythmic patterns, (Xi), and melody, (Yj). The tran-
sition probabilities for (Xi) depend on de current level of intensity
of the song, as mentioned before. Regarding the melodic line, Yj ,
the transition probabilities matrix may be set in a way such that the
same note is not played consecutively, what gives more variability
to the melody.

3 Plugging the Methods

Here we describe the pseudo-score of a music piece we have com-
posed, at which the previous methods were used cooperatively.

The piece is organized in cycles, bars and beats. The progress of
the piece in the course of the cycles is as follows:

• Cycle 1
The strings ensemble follows the chords played by the musi-
cian, as recognized by the computer vision system.

• Cycle 2
The drum loop number 1 is triggered by hitting the “Enter”
button.

• Cycle 3
Musician starts fingering, keeping the shape of the chords, so
the video-based chord recognition algorithm can work prop-
erly.

• Cycle 4
Musician starts strumming. Drum loop changes to level 2, a
more intense level. Automatic composition algorithm starts at
level of intensity 1.

• Cycle 5
Automatic composition algorithm goes to level of intensity 2.

• Cycle 6
Drum loop changes to number 3, the more intense level. Au-
tomatic composition algorithm goes to level of intensity 3, the
greatest.

• Cycle 7
The number of restrictions to be satisfied by the sequence of
notes increases. The musician should play the sequence of
chords that will be repeated for the next two cycles.



• Cycle 8
Drum loop goes back to level 1. “Air Guitar” mode is turned
on: the position of the hand indicates the region to which
the improvised sequence of notes has to converge. Automatic
composition algorithm goes back to level 2.

• Cycle 9
The parameters of the previous cycle are kept. The system
remains in the “Air Guitar” mode to give it significant impor-
tance.

• Cycle 10
Control of the sequence of chords goes back to the computer
vision system. Musician changes the guitar effect. “Air Gui-
tar” mode is turned off. Automatic composition algorithm
returns to level 3. Drum loop returns to level 3. Musician
performs a sequence of chords different from the one of the
previous cycle.

• Cycle 11
Parameters of the system are the same as in cycle 10. Musi-
cian performs yet another sequence of chords.

• Cycle 12
Parameters of the system are the same as in cycle 11. Musi-
cian performs the first part of the riff of chords preparing the
conclusion of the piece.

• Cycle 13
Parameters of the system are the same as in cycle 12. Musi-
cian performs the second part of the riff of chords preparing
the conclusion of the piece.

• Cycle 14
Drum loop goes back to level 1. Musician positions the hand
in the last chord of the piece and performs the last strum. This
is the last cycle of the music piece.

References

BRADSKI, G., AND KAEHLER, A. 2008. Learning OpenCV: Com-
puter Vision with the OpenCV Library. O’Reilly.

FUJISHIMA, T. 1999. Real-time chord recognition of musical
sound: A system using common lisp music. In International
Computer Music Conference.


