
EigenSound: Song Visualization for Edition Purposes

Marcelo Cicconet, Paulo Cezar Carvalho

Figure 1. Top: waveform. Botton: eigensound.

Abstract—In this work we propose a representation of audio
files more suitable for the task of editing audio and video
than the traditional waveform graph, in the sense that it helps
finding clusters and onsets visually, due to the array of colors
associated to each previously computed segment. Segmentation
and color-mapping are done by means of well known image
processing techniques: bidimensional convolution and spectral
decomposition, respectively.

Keywords-Audio Visualization; Spectral Decomposition; Self-
Similarity Matrix; Music Information Retrieval.

I. INTRODUCTION

The waveform plot of a sound is the simplest represen-
tation of uncompressed digital audio. Supposing the audio
is mono (one channel only), that representation consists of
the graph of timestamp versus amplitude. When the audio
samples are taken from timestamps equally spaced, it’s
called Pulse Code Modulation (PCM).

This way of seeing songs is widely used in all sort of
audio and video editors, a somehow surprisingly fact, since
such a low level description of audio in most cases gives
no sufficient indication of segment onsets nor hints about
regions similar to each other. As an example, if you look at
the top part of figure 1 you will find it difficult to gess what
could be the solo region.

So we started researching for an audio visualization
more helpfull to people working with audio and video, and
this text describes some progress we have made in that
direction. The method developed is based on the literature of
audio summarization, especially [1]. Audio summarization,
as our problem, demands finding onsets/offsets and locate
important regions of the sound: verse, refrain, chorus, solo,
bridge, coda, etc. We will not, however, try to name those
regions. Instead, we will make their differences/simmilarities
more visible.

In section II some low level audio features used will
be introduced. Audio features are extracted from equally
spaced and overlapping windows. Section III describes how
they are used to find segment onsets/offsets, by looking

at a diagonal band of the corresponding Self-Similarity
Matrix. After segmentation, a small Self-Similarity Matrix is
built, and its spectral components are computed to construct
representative images like that of figure 1 - botton. Section
IV will explain that process. Results and final comments will
take place at section V.

II. AUDIO FEATURES

Our process begins by transforming the raw audio data
into a sequency of feature vectors. A feature vector is usually
computed from the entries absolute values of the Fast Fourier
Transform (FFT) of successive overlaping windows, and
describes a (sometimes perceptually related) property of the
sound. The vector of squared absolute values of the FFT is
called the frequency spectrum of the audio window.

The chosen feature, the window size and the overlap (hop)
size are tunable parameters. We have experimented with
8 different one-dimensional features (see [2] for details):
loudness, spectral flux, spectral centroid, spectral spread,
spectral skewness, spectral roll-off, spectral flatness and
spectral crest.

One-dimensional features can be computed for different
bands of the frequency spectrum, defining a feature whose
dimension is the number of bands. We have used loudness
and spectral crest in that way, with 10 non-overlapping
frequency bands. Finally there are the pre-chroma and the
chroma vectors. The first consist of the energies correspond-
ing to each one of the 84 MIDI notes ranging from 24 to
107. By packing the energies of notes with the same name
we have the second ([3]).

III. SEGMENTATION

Given feature vectors vi and vj , the similarity between
them is defined by S(i, j) = 1−‖vi−vj‖2/M (where M =
maxk,l ‖vk − vl‖) and the matrix S so built is called Self-
Similarity Matrix (SSM). See figure 2 (left) for an example.

SSM’s usually have a checkerboard pattern. So we can
segment the song by convolving a diagonal band of the SSM
with a checkerboard-shaped kernel and look for peaks of the



Figure 2. Left: SSM of ACDC’s Anything Goes song, relative to the the
pre-chroma feature, with a window resp. overlap of about 743 resp. 372
mili-seconds. The colormap goes from blue (low similarity) to red throw
the HSV colorspace. Right: Normalized first (top) and second components
of the spectral decomposition of the segment-indexed SSM. Feature is pre-
chroma, window resp. hop size are about 93 resp. 23 mili-seconds long.

resulting curve (the so called novelty score) or of a smoothed
version of it (fig. 3, top).

Peaks above a threshold define onsets, and a segment is
the set of windows between consecutive onsets. The mean
feature vector of each segment will represent the segment,
and a new Self-Similarity Matrix is computed using that
means. This matrix is called segment-indexed SSM.

Figure 3. Top: novelty score of ACDC’s Anything Goes song, using
the pre-chroma feature, window resp. hop size of about 93 resp. 23
mili-seconds, checkerboard kernel and smoothing kernel widths being
equal to 32 windows. Botton: Corresponding EigenSound image, using 4
componentes of the segment-indexed SSM’s spectral decomposition.

IV. CLUSTERING

SSM’s are symmetric matrices, thus the spectral decom-
position applies, i.e., an SSM can be written as

∑
λiviv

T
i ,

where λi and vi are eigenvalue and eigenvector pairs. Sorting
the eigenvalues in decreasing order, the first components
represent most of the SSM information, different compo-
nents describing de contribution of different parts to the
total image. Figure 2 (right) presents two components of
a segment-indexed SSM.

In the particular case of SSM’s, summing components
along columns will show song regions with high self-
similarity. Therefore a song representative image can be
build by stacking along column sums of spectral component
images, the line number being equal to the component index
(figure 3, botton).

That image can halp finding onsets and clusters by visual
inspection, making easier the task of editing audio and video.
Refer to figure 1 for an example.

V. CONCLUSION

In this work we have proposed a method to represent a
song by means of an image based upon previous segmen-
tation (via convolution along a diagonal band of the SSM)
and clustering (using spectral decomposition of the segment-
indexed SSM).

The tricky point of this project is the selection of the
proper set of parameters, especially the feature vector, in
view of the fact that the only way to evaluate the goodness
of the result is by eyes/ears inspection. For that reason we
have implemented an app to facilitate searching for good
sets of parameters (fig. 4), which can be downloaded from
the project website [4].

Figure 4. Screenshot of the app we have implemented to halp finding
good sets of parameters.

Pre-chroma and chroma behave better for songs with
strong harmonic base, since they are designed to be pitch
and chord sensitive. On the other hand, for songs which
present phases of high and low intensity, loudness has been
a good choise of feature.

As future work we intent to combine one feature from
each of the three perceptual fields (intensity, pitch and
timbre) and search for optimum weights representing them.

REFERENCES

[1] M. Cooper and J. Foote, “Summarizing popular music via
structural similarity analysis,” in Proceedings of the IEEE
Workshop on Applications of Signal Processing to Audio and
Acoustics, 2003.

[2] G. Peeters, “A large set of audio features for sound description
(similarity and classification) in the cuidado project,” IRCAM,
Tech. Rep., 2004.

[3] T. Jehan, “Creating music by listening,” Ph.D. dissertation,
MIT Media Laboratory, 2005.

[4] http://w3.impa.br/˜cicconet/thesis/eigensound/.


