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This report has 5 main purposes:
1. Clarify the algorithm described in [2] (which was presented first in [1]).
2. Implement the algorithm described in [2], using the GHMM library [3].
3. Better understand the GHMM library (which is poorly documented).
4. Provide details of my implementation, so others can better understand and use 
it.
5. Better understand Hidden Markov Models.

The mentioned implementation corresponds to a slightly different problem than the 
one described in [1].

Problem Definition
    Suppose you have a curve in space, say C 0={(x1, y1) ,( x2, y2) , ... ,(xN , yN )} , where 

N is finite. And suppose you have a point, ( x τ , y τ) , whose position is space 

changes with time, τ , for τ=1, 2,... . Given a particular τ , we'd like to 

compare the tail C τ={( x τ−(N−1) , y τ−(N−1)) ,... ,( x τ−1 , y τ−1) ,(x τ , y τ)}  with C 0  and 
identify when they seem to be the same.
    Observation 1: Notice that we are requiring C 0  and C τ  to have the same 
length, N . It doesn't need to be that way, though. For instance, if you are 
using a sensor with a fixed sample rate to input the curve, you could have C 0  

captured with the point moving slowly, and want to identify a C τ  similar to 

C 0  even if the speed of the point when capturing C τ  is greater (in which case 

C τ  would have less sampled points than C 0 ).
    Observation 2: Suppose you are using the computer mouse as input device and 
that C 0  is a small “S” in the top left corner of the screen. You could be 
interested in identify when an “S” is captured in any position (say, the bottom 
right), not only in the exact position C 0  was captured. This is not the present 
case.

Hidden Markov Models
    A good introduction to HMM is Alpaydin's book [4], chapter 13, from where I'm 
grabbing the notation.
    Let's consider a Discrete Markov Process with N  states, S1 , ... , S N . We 

denote by qτ  the state at time τ . So, for instance, q3=S5  means that the 

state at time τ=3  is S5 . We denote aij  as the probability of going from 

state S i  at time  τ  to state S j  at time τ , that is, 

aij=P(qτ+1=S j∣qτ=S i) . The initial probability if state S i  is denoted by πi , 

that is, πi=P (q1=S i) . Let's name Π  the set {π1 , ... ,πN } , and A  the set 

{aij∣i , j=1,. .. , N } . This way, once we know Π  and A , the Markov Model is 
completely determined. Well, usually we don't know those sets, and they should be 
determined by observing the Markov Model in action. That's actually easy once we 
can observe the states that the process is going through. It turns out that, most 
of the time, those states are hidden, that is, all we have is a set of 
observations, O={O1 , ... ,O τ} , where each O j can assume some values that give 
hints about the actual state. These hints can be of two types: discrete or 
continuous. In the first case, the observations are a discrete set, say 

{v1,. .. , vM } , and the model is said to have discrete emissions. The emission 



probabilities are b j(m)=P (O τ=vm∣qτ=S j) . A Hidden Markov Model with continuous 
emissions is one where the observations are a continuum of numbers, and the 
emission probabilities are represented by density functions (usually gaussians or 
mixture of gaussians), each state S j  having its own associated density.
    In our case, we'll be dealing with the second type of HMM: an HMM with 
continuous emissions.
    Also, our HMM will be what is called a left-right (or left to right) HMM. In 
these models, once a state S i  is reached for time τ , and the last distinct 

state prior to S i  is, say, S j , than S j  is never reached again (that is, the 

process will not be S j  anymore for any time greater than τ ). In other words, 

once the process passes through S j , it won't go back to S j  anymore in the 
future.

Our Hidden Markov Model
    Back to our problem, we have a curve C 0={(x1, y1) ,( x2, y2) , ... ,(xN , yN )} . We set 

the number of states as N  , and the states will be the points in the curve 

C 0 , that is, S i=(xi , y i) , for i=1,. .. , N . The emission probabilities, for each 

state S i , will be gaussians centered in ( xi , yi) . That is, b j (O=(x , y))  is a 

gaussian function, centered in ( x j , y j) , with covariance matrix Σ j , evaluated 

at the point ( x , y ) .
    In our model the input points are normalized to fall in the unit square, 

[0,1]×[0,1] . We define Σ j  as σ I , where I  is the identity matrix 2x2  

and σ  is some value around 0.5 . We also suppose  aii=1/3,ai , i+1=1/3,a i , i+2=1/3  

and aij=0∀ j>i+2  (with proper modifications for i , j  close to 0  and N , 

in which case aij  is defined so that S0  and SN  are dead ends of the 
process).
    Now, given a training curve C 0  and a test curve C τ , we want to match each 
point of the test curve with a point of the training curve, that is, each 
observation with a state of the underlying HMM, whose model, λ={A ,Π} , is set 
beforehand.
    To achieve that, we need to compute, for all i , the probability of the state 

being S i  (that is, the associated point being ( xi , yi) ) given that the 

observation is some ( x , y ) , and than maximize over i , to find out what is the 
most probable associated point. And that should be done for each point of the 
observed curve C τ .
    In summary, given the model λ={A ,Π}  and the observations 

C τ=O={O1 , ... ,ON } , we want to compute γ t (i)=P(qt=S i∣O ,λ) , for all t=1,. .. , N  

and i=1,. .. , N .

    The computation of γ t(i)  depends on what is known, in the literature of HMM, 

as the forward and backward variables, αt(i)  and βt(i) . They are defined by 

αt (i)=P (O1 , ... ,Ot ,q t=S i∣λ)  and βt (i)=P (Ot+1 , ... ,ON∣qt=S i ,λ) , respectively. The 

equation that relates these variables is γ t(i )=αt(i)βt(i)/(∑ j
αt( j)βt( j)) .

    More details about these equations can be found in [4]. We now proceed 
to the formulation of the problem in terms of the GHMM library [3].



Translating Our Problem to the GHMM Language
    Here are the prototypes of the functions we will use:
    int ghmm_cmodel_forward(ghmm_cmodel * smo,
                            double *O,
                            int T,
                            double ***b,
                            double **alpha,
                            double *scale,
                            double *log_p);
    int ghmm_cmodel_backward(ghmm_cmodel * smo,
                            double *O,
                            int T,
                            double ***b,
                            double **beta,
                            const double *scale);
    The first function calculates alpha[t][i] (i.e., αt(i) ), scaling factors 
scale[t] and log(P(O|lambda)) for a given double sequence and a given model. The 
second calculates beta[t][i] (i.e., βt(i) ) given a double sequence and a model. 
We now go through the input parameters.

(a) ghmm_cmodel * smo
    Structure of the model for HMM with continuous emissions.
    typedef struct ghmm_cmodel {
        int N; // number of states, as in the above notation
        int M; // maximum number of components in the states;
               // emissions are modeled in GHMM as mixtures of gaussians,
               // so this parameter specifies the maximum number of gaussians
               // in the mixture for a particular state
        int dim; // number of dimensions of the emission components
                 // in our case this is equal to 2
        int cos; // number of transition matrices (1 in our case)
        double prior; // a priori probability of the model;
                      // -1 means no prior specified (all models have
                      // equal prior probability (which is our case)
        char *name; // arbitrary name for the model (null terminated utf-8)
        int model_type; // bit flags for various model extensions;
                        // we are using GHMM_kContinuousHMM;
                        // the complete list is in ghmm.h
        ghmm_cstate *s; // all states of the model;
                        // (more details later...)
        ghmm_cmodel_class_change_context *class_change; // pointer to a
                        // ghmm_cmodel_class_change_context
                        // struct necessary for multiple transition classes
                        // used only if cos > 1 (which is not our case)
    } ghmm_cmodel;
    We'll come back to this structure later.
(b) double *O
    Contains the sequence of observations. It's length is 2∗N  and, supposing 

the observed sequence is ( x1, y 1) , ... ,(xN , yN ) , one should set O[0] = x1 , O[1] = 

y 1 , O[2] = x 2 , and so on...
(c) int T
    Length of the sequence O (that is, 2∗N ).
(d) double ***b
    Optionally precomputed emission probabilities. We'll use NULL instead.
(e) double **alpha
    alpha[t][i] is αt (i) , according to our previous notation.



(f) double *scale
    Scale factors. Honestly, I'm not sure what they mean... We don't need them 
anyway.
(g) double *log_p
    Log likelihood of the observation given the model: log(P(O∣λ)) .
(h) double **beta
    beta[t][i] is βt(i) , according to our previous notation.
(i) const double *scale
    There you go: apparently the scale factors computed in the forward method are 
used here.

    OK, let's go back to the details of the ghmm_cmodel structure now. What remains 
to explain is ghmm_cstate *s, the array of states. Here is the definition of the 
variables ghmm_cstate, the structure of the state for HMMs with continuous 
emissions:
    typedef struct ghmm_cstate {
        int M; // number of output densities per state (1, in our case)
        double pi; // initial probability of the state ( πi , remember?)
        int *out_id; // IDs of successor states;
                     // they are defined based on the transition probabilities
                     // ( aij , remember?); more on this later...
        int *in_id; // IDs of predecessor states
        double **out_a; // transition probabilities to successor states;
                        // it is a matrix in case of cos > 1 (which is not ours);
                        // are based on the transition probabilities;
                        // more on this later...
        double **in_a; // transition probabilities from predecessor states.
        int out_states; // number of  successor states
        int in_states;  // number of  predecessor states
        double *c; // weight vector for output function components;
                   // since our emissions are mixture of gaussians with only
                   // one component, c is an array of one element only,
                   // and the value of this element is 1
        int fix; // flag for fixation of parameter;
                 // if fix = 1 do not change parameters of output functions;
                 // if fix = 0 do normal training; default is 0;
                 // we are using 1;
        ghmm_c_emission *e; // vector of ghmm_c_emission;
                            // type and parameters of output function components;
                            // another thing we will explain later...
        char *desc; // contains a description of the state
                    // null terminated utf-8);
                    // we're not setting this
        int xPosition; // x coordinate position for graph representation plotting;
                       // we're not setting this
        int yPosition; // y coordinate position for graph representation plotting;
                       // we're not setting this
  } ghmm_cstate;

    To understand these parameters, let's suppose that our training curve has 5 
points (in honor to the name of Atlanta's main subway station ). In this case, the 
transition probabilities matrix is



    [
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

]=[1/3 1/3 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/3
0 0 0 1/3 2/3
0 0 0 0 1

] .

    Therefore, being 1,. .. ,5  the IDs of the states, the output and input states 
for each state are as follows:
    state 1, outlets: {1, 2, 3}, inlets: {1}
    state 2, outlets: {2, 3, 4}, inlets: {1, 2}
    state 3, outlets: {3, 4, 5}, inlets: {1, 2, 3}
    state 4, outlets: {4, 5},    inlets: {2, 3, 4}
    state 5, outlets: {5},       inlets: {3, 4, 5}
    This shows how the variables out_id, in_id, out_states, and in_states of the 
structure ghmm_cstate should be filled.
    out_a and in_a are filled according to the following:
    state 1, output prob.: {1/3, 1/3, 1/3}, input prob.: {1/3}
    state 2, output prob.: {1/3, 1/3, 1/3}, input prob.: {1/3, 1/3}
    state 3, output prob.: {1/3, 1/3, 1/3}, input prob.: {1/3, 1/3, 1/3}
    state 4, output prob.: {1/3, 2/3},      input prob.: {1/3, 1/3, 1/3}
    state 5, output prob.: {51},            input prob.: {1/3, 2/3, 1}    
    
    Last, we have ghmm_c_emission *e, the array of emissions. Let's take a look at 
the declaration of the ghmm_c_emission structure:
    typedef struct ghmm_c_emission {
        ghmm_density_t type; // type of the density (“binormal” in our case)
        int dimension; // dimension of the multivariate normal (2 in our case)
        union {
            double val;
            double *vec;
        } mean; // mean for output functions
                // (pointer to mean vector for multivariate);
                // we set this as the coordinates of a sampled point
        union {
            double val;
            double *mat;
        } variance; // variance (or pointer to a covariance matrix
                    // for multivariate normals);
                    // in our case, variance.mat = {0.5, 0, 0, 0.5}, since
                    // the covariance matrix of the density for each emission is
                    // 0.5 0
                    //   0 0.5
        double *sigmainv; // pointer to inverse of covariance matrix
                          // if multivariate normal (else NULL)
        double det; // determinant of covariance matrix for multivariate normal
        double *sigmacd; // Cholesky decomposition of covariance matrix A
        double min; // minimum of uniform distribution or left boundary
                    // for right-tail gaussians;
                    // we're not wetting this
        double max; // maximum of uniform distribution
                    // or right boundary for left-tail gaussians;
                    // we're not setting this
        int fixed; // if fixed != 0 the parameters of the density are fixed
                   // we're setting this as 1
    } ghmm_c_emission;



Implementation
    We'll go through the interface of the implemented software, so you can 
understand what it (ideally) does.
    This is what it looks like right after launch:

    The user start by clicking the button “Start”, and then inputs a curve with the 
mouse on the largest black view:

    Then the button “Trim” should be pressed, so the input curve can be trimmed 
using the provided sliders:



    Then this training curve should be recorded by pressing “Record”. This 
procedure should be repeated three times (as we will have three training curves). 
After recording the third curve, the button “Train” is enabled (and should be 
clicked). After clicking in “Train”, the button “Test” is enabled (and should be 
clicked).
    After clicking “Test”, the program is ready for comparing a test input curve 
with the three recorded training curves. The test curve should be input in the 
largest black view on the left. After the test curve has a full tail (of 50 points) 
some information about the matching using HMM is presented on the three black views 
on the right (each view, from top to bottom, corresponding to one of the training 
curves, from the first to the last recorded).

    Let's take a closer look at one of the views on the right:



    In this view, the white, yellow and blue curves represent the proximity of the 
test curve according to what we call the gamma criterion, the alpha criterion and 
the euclidean criterion, respectively. We'll explain these in a moment. The red 
line represents a lower threshold for the euclidian criterion. The filled white and 
blue circles show points where the test curve is close to the corresponding 
training curve according to the gamma and euclidian criteria, respectively. The 
unfilled gray circles represent the mapping between the current tail indices 
(imagined in the horizontal axis) and the corresponding training curve indices 
(imagined on the vertical axis). If the curves match perfectly, the unfilled gray 
circles are aligned from the bottom left to the top right of the view.
    We recall that we compute γ t(i) , for all t=1,. .. , N  and i=1,. .. , N , and 

then maximize over i  to get the best match for each t . That is, the point in 

the training curve that is associated with the point O t=( xt , y t)  is that which 

satisfies max i γ t (i) . This criterion is different from the one in [2], where 

αt(i)  is used instead. We think our approach makes more sense, given the 
definitions of these variables.
     As the test and training curves have the same length, a perfect match happens 
when the i -th point of the training curve is matched with the i -th point of 
the test curve, for all i . Therefore, a possible measure of similarity between 
curves is “how much the set of matched indices deviates from the set corresponding 
to the perfect match”. Let m(i)  be index of the point in the test curve that is 
matched with the point of index i  in the training curve. We define the distance 

between the training and test curves as (∑i
∣m(i)−i∣)/N 2

. The division by N 2  

is so that the distance stays in the range [0, 1] . The distance according to the 
gamma criterion (respectively, the alpha criterion) is that where m(i)  is 

computed using the γ t(i)  values (respectively, the αt(i)  values).
    The distance according to the euclidian criterion is simply the euclidian 
distance between the training and test curves. (Actually we multiply that distance 
by 2  and divide by N , for a better spread in the range [0,1] .
    In the case of the euclidian criterion, the test and training curves are 
identified as similar when the euclidian distance goes below the threshold shown by 
the red line in the picture above.
    For the other criteria, similarity is detected when the tail of similarities 
shows a consistent decreasing behavior for a time superior to half the length of 
the training curve, and the accumulated amount of decreasing is above some 
threshold.
    In all cases, once a similarity is detected, the next similarity will only be 
detected once a time equivalent to 70% of the length of the training curve passed.

Source Code
    The software was implemented in Objective-C. The implementation contains 5 
classes: InputView, Curve, ObjGHMM, ModelGHMM and RingBufferView.
    InputView. Main class. It corresponds to the larger black view on the left of 
the software graphical interface.
    Curve. Contains the points of the training and test curves.
    ModelGHMM. Encapsulates the variables of the models for each training curve.
    ObjGHMM. Where the matching and distance measurements take place.
    RingBufferView. Handles the visualizations and the detection of proximity 
between training and test curves. Corresponds to the small views on the right of 
the software graphical interface.

That's All Folks
    This is still a work in progress. Feedback is very welcome. If you have any, 
feel free to contact me through cicconet@gmail.com.



References
[1] Bevilacqua et al. Wireless sensor interface and gesture-follower for music 
pedagogy. 2007.
[2] Bevilacqua et al. Continuous Realtime Gesture Following and Recognition. 2010.
[3] http://ghmm.org/
[4] Ethem Alpaydin. Introduction to Machine Learning. 2004.

http://ghmm.org/

