Smoothness of solenoidal attractors

Artur Avila*, Sébastien Gouëzel ${ }^{\dagger}$ and Masato Tsujii ${ }^{\ddagger}$

February 24, 2005

Abstract

We consider dynamical systems generated by skew products of affine contractions on the real line over angle-multiplying maps on the circle S^{1} : $$
T: S^{1} \times \mathbb{R} \rightarrow S^{1} \times \mathbb{R}, \quad T(x, y)=(\ell x, \lambda y+f(x))
$$ where $\ell \geq 2,0<\lambda<1$ and f is a C^{r} function on S^{1}. We show that, if $\lambda^{1+2 s} \ell>1$ for some $0 \leq s<r-2$, the density of the SBR measure for T is contained in the Sobolev space $W^{s}\left(S^{1} \times \mathbb{R}\right)$ for almost all (C^{r} generic, at least) f.

1 Introduction

In this paper, we study dynamical systems generated by skew products of affine contractions on the real line over angle-multiplying maps on the circle $S^{1}=\mathbb{R} / \mathbb{Z}$:

$$
\begin{equation*}
T: S^{1} \times \mathbb{R} \rightarrow S^{1} \times \mathbb{R}, \quad T(x, y)=(\ell x, \lambda y+f(x)) \tag{1}
\end{equation*}
$$

where $\ell \geq 2$ is an integer, $0<\lambda<1$ is a real number and f is a C^{r} function on S^{1} (for some integer $r \geq 3$). It admits a forward invariant closed subset A such that $\omega(\mathbf{x})=A$ for Lebesgue almost every point $\mathbf{x} \in S^{1} \times \mathbb{R}$. Further, there exists an ergodic invariant probability measure μ on A for which Lebesgue almost every point on $S^{1} \times \mathbb{R}$ is generic. The measure μ is called the $S B R$ measure for T. If T is locally area contracting, i.e., $\operatorname{det} D T \equiv \lambda \ell<1$, the subset A is a Lebesgue null subset and hence the SBR measure is totally singular with respect to the Lebesgue measure. In [7], the third named author studied the case where T is locally area expanding, i.e., $\lambda \ell>1$, and proved that the SBR measure is absolutely continuous with respect to the Lebesgue measure for C^{r} generic f.

In the present paper, we study the smoothness of the density of the SBR measure in more detail, and the mixing properties of T.

[^0]Theorem 1. If ℓ and λ satisfy $\lambda^{1+2 s} \ell>1$ for some $0 \leq s<r-2$, the density of the SBR measure μ with respect to the Lebesgue measure is contained in the Sobolev space $W^{s}\left(S^{1} \times \mathbb{R}\right)$ for any f in an open dense subset of $C^{r}\left(S^{1}, \mathbb{R}\right)$.

Since the elements of $W^{s}\left(S^{1} \times \mathbb{R}\right)$ for $s>1$ are continuous up to modification on Lebesgue null subsets from Sobolev's embedding theorem, it follows

Corollary 2. If $\lambda^{3} \ell>1$ and $r \geq 4$, the attractor A has non-empty interior for f in an open dense subset of $C^{r}\left(S^{1}, \mathbb{R}\right)$.

Remark. Recently, Bamón, Kiwi and Rivera-Letelier announced the following result: for an open dense subset of $C^{1+\epsilon}$ hyperbolic endomorphisms of the annulus, $\log d+\chi>0$ implies that the attractor has non-empty interior, where d is the degree of the induced map in homology and χ is the negative Lyapunov exponent of the SBR measure. (See also [2].)
Remark. When $s>1$, we also obtain that the density of the SBR measure is essentially bounded. Together with the results of Rams in [6], it gives examples of solenoids in higher dimensions for which the invariant measure is equivalent to the Hausdorff measure.

The Perron-Frobenius operator $P: L^{1}\left(S^{1} \times \mathbb{R}\right) \rightarrow L^{1}\left(S^{1} \times \mathbb{R}\right)$ is defined by

$$
\operatorname{Ph}(\mathbf{x})=\frac{1}{\lambda \ell} \sum_{\mathbf{y} \in T^{-1}(\mathbf{x})} h(\mathbf{y})
$$

and characterized by the property that

$$
\begin{equation*}
\frac{d T_{*} \nu}{d \mathrm{Leb}}=P\left(\frac{d \nu}{d \mathrm{Leb}}\right) \tag{2}
\end{equation*}
$$

for any finite measure ν which is absolutely continuous with respect to the Lebesgue measure Leb on $S^{1} \times \mathbb{R}$.

When $s>1 / 2$, we obtain a precise spectral description of P, which strengthens considerably Theorem 1.

Theorem 3. Assume that ℓ and λ satisfy $\lambda^{1+2 s} \ell>1$ for some $1 / 2<s<r-2$. Take $\gamma \in\left(\left(\lambda^{1+2 s} \ell\right)^{-1 / 2}, 1\right)$. For any f in an open dense subset of $C^{r}\left(S^{1}, \mathbb{R}\right)$, there exists a Banach space \mathcal{B} contained in $W^{s}\left(S^{1} \times \mathbb{R}\right)$ on which the transfer operator P acts continuously with an essential spectral radius at most γ (in particular, P admits a spectral gap, and the correlations of T decay exponentially fast). Moreover, \mathcal{B} can be chosen to contain all functions in $C^{r-1}\left(S^{1} \times \mathbb{R}\right)$ supported in some given (fixed) compact subset of $S^{1} \times \mathbb{R}$.

Since T is uniformly hyperbolic, the exponential decay of correlations was already known. The novel feature of our theorem is that, when the contraction coefficient λ tends to 1 , our estimates do not degenerate. In fact, the inequality $\lambda<1$ is used only to ensure that a compact subset of $S^{1} \times \mathbb{R}$ is invariant, to get an SBR measure. Hence, our method may probably be generalized to settings with a neutral (or slightly positive) exponent on a compact space.

Fix $\ell \geq 2$ and let $\mathcal{D}_{r, s} \subset(0,1) \times C^{r}\left(S^{1}, \mathbb{R}\right)$ be the set of pairs (λ, f) such that the conclusions of Theorems 1 and 3 hold. Let $\mathcal{D}_{r, s}^{\circ}$ be the interior of $\mathcal{D}_{r, s}$. The following result shows that Theorems 1 and 3 hold for "almost all" T, in a precise sense:

Theorem 4. If ℓ and λ satisfy $\lambda^{1+2 s} \ell>1$ for some $0 \leq s<r-2$, there exists a finite collection of C^{∞} functions $\varphi_{i}: S^{1} \rightarrow \mathbb{R}, 1 \leq i \leq m$, such that, for any $g \in C^{r}\left(S^{1}, \mathbb{R}\right)$, the subset

$$
\left\{\left(t_{1}, t_{2}, \cdots, t_{m}\right) \in \mathbb{R}^{m} \mid\left(\lambda, g(x)+\sum_{i=1}^{m} t_{i} \varphi_{i}(x)\right) \notin \mathcal{D}_{r, s}^{\circ}\right\}
$$

is a null subset with respect to the Lebesgue measure on \mathbb{R}^{m}.
We proceed as follows. In the next section, we introduce some definitions related to a transversality condition on the mapping T, which is similar to (but slightly different from) that used in [7]. This transversality condition is proved to be a generic one in the last section. In Section 3, we introduce some norms on the space of C^{r} functions on $S^{1} \times \mathbb{R}$ and prove a Lasota-Yorke type inequality for them, imitating the argument in the recent paper [3] of C. Liverani and the second named author with slight modification. Section 4 is the core of this paper, where we prove a Lasota-Yorke inequality involving the W^{s} norm and the norm introduced in Section 3. Finally, in Section 5, we show how these Lasota-Yorke inequalities imply the main results of the paper.

2 Some definitions

From here to the end of this paper, we fix an integer $\ell \geq 2$, real numbers $0<\lambda<1$ and $0 \leq s<r-2$ satisfying $\lambda^{1+2 s} \ell>1$. We also fix a positive number κ and consider the mapping T for a function f in

$$
\mathcal{U}=\mathcal{U}_{\kappa}=\left\{f \in C^{r}\left(S^{1}, \mathbb{R}\right) ;\|f\|_{C^{r}}:=\max _{0 \leq k \leq r} \sup _{x \in S^{1}}\left|\frac{d^{k}}{d x^{k}} f(x)\right| \leq \kappa\right\}
$$

Fix $\alpha_{0}=\kappa /(1-\lambda)$ and let $D=S^{1} \times\left[-\alpha_{0}, \alpha_{0}\right]$. Then we have $T(D) \subset D$. Let \mathcal{P} be the partition of S^{1} into the intervals $\mathcal{P}(k)=[(k-1) / \ell, k / \ell)$ for $1 \leq k \leq \ell$. Let $\tau: S^{1} \rightarrow S^{1}$ be the map defined by $\tau(x)=\ell \cdot x$. Then the partition $\mathcal{P}^{n}:=\bigvee_{i=0}^{n-1} \tau^{-i}(\mathcal{P})$ for $n \geq 1$ consists of the intervals

$$
\mathcal{P}(\mathbf{a})=\bigcap_{i=0}^{n-1} \tau^{-i}\left(\mathcal{P}\left(a_{n-i}\right)\right), \quad \mathbf{a}=\left(a_{i}\right)_{i=1}^{n} \in \mathcal{A}^{n}
$$

where \mathcal{A}^{n} denotes the space of words of length n on the set $\mathcal{A}=\{1,2, \cdots, \ell\}$. Remark. Notice that \mathbf{a} is the reverse of the itinerary of points in $\mathcal{P}(\mathbf{a})$.

For $x \in S^{1}$ and $\mathbf{a} \in \mathcal{A}^{n}$, there is a unique point $y \in \mathcal{P}(\mathbf{a})$ such that $\tau^{n}(y)=x$, which is denoted by $\mathbf{a}(x)$. For $\mathbf{a}=\left(a_{i}\right)_{i=1}^{n} \in \mathcal{A}^{n}$, the image of the segment $\mathcal{P}(\mathbf{a}) \times\{0\} \subset S^{1} \times \mathbb{R}$ under the iterate T^{n} is the graph of the function $S(\cdot, \mathbf{a})$ defined by

$$
S(x, \mathbf{a}):=\sum_{i=1}^{n} \lambda^{i-1} f\left(\tau^{n-i}(\mathbf{a}(x))\right)=\sum_{i=1}^{n} \lambda^{i-1} f\left([\mathbf{a}]_{i}(x)\right)
$$

where $[\mathbf{a}]_{q}=\left(a_{i}\right)_{i=1}^{q}$. For a word $\mathbf{a}=\left(a_{i}\right)_{i=1}^{\infty} \in \mathcal{A}^{\infty}$ of infinite length, we define

$$
S(x, \mathbf{a})=\lim _{i \rightarrow \infty} S\left(x,[\mathbf{a}]_{i}\right)=\sum_{i=1}^{\infty} \lambda^{i-1} f\left([\mathbf{a}]_{i}(x)\right)
$$

For a word \mathbf{c} of length m, let $\mathcal{P}_{*}(\mathbf{c})$ be the union of the interval $\mathcal{P}(\mathbf{c})$ and the two intervals in \mathcal{P}^{m} adjacent to it. The function $S(\cdot, \mathbf{a})$ for a word $\mathbf{a} \in \mathcal{A}^{n}$ with $1 \leq n \leq \infty$ may not be continuous on $\mathcal{P}_{*}(\mathbf{c})$ when $\mathcal{P}(\mathbf{c})$ has $0 \in S^{1}$ as its end. Nevertheless the restriction of $S(\cdot, \mathbf{a})$ to $\mathcal{P}(\mathbf{c})$ can be naturally extended to $\mathcal{P}_{*}(\mathbf{c})$ as a C^{r} function. Indeed, letting $\tau_{\mathbf{c}, \mathbf{a}}^{-i}: \mathcal{P}_{*}(\mathbf{c}) \rightarrow S^{1}$ be the branch of the inverse of τ^{i} satisfying $\tau_{\mathbf{c}, \mathbf{a}}^{-i}(\mathcal{P}(\mathbf{c})) \subset \mathcal{P}\left([\mathbf{a}]_{i}\right)$, the extension is given by

$$
\begin{equation*}
S_{\mathbf{c}}(\cdot, \mathbf{a}): \mathcal{P}_{*}(\mathbf{c}) \rightarrow \mathbb{R}, \quad S_{\mathbf{c}}(x, \mathbf{a}):=\sum_{i=1}^{n} \lambda^{i-1} f\left(\tau_{\mathbf{c}, \mathbf{a}}^{-i}(x)\right) \tag{3}
\end{equation*}
$$

For any word a of finite or infinite length, we have

$$
\begin{equation*}
\sup _{x \in \mathcal{P}_{*}(\mathbf{c})} \max _{0 \leq \nu \leq r} \ell^{\nu}\left|\frac{d^{\nu}}{d x^{\nu}} S_{\mathbf{c}}(x, \mathbf{a})\right| \leq \alpha_{0} \tag{4}
\end{equation*}
$$

For $\mathbf{a}, \mathbf{b} \in \mathcal{A}^{q}$ and $\mathbf{c} \in \mathcal{A}^{p}$, we say that \mathbf{a} and \mathbf{b} are transversal on \mathbf{c} and write $\mathbf{a} \pitchfork_{\mathbf{c}} \mathbf{b}$ if

$$
\left|\frac{d}{d x} S_{\mathbf{c}}(x, \mathbf{a})-\frac{d}{d x} S_{\mathbf{c}}(y, \mathbf{b})\right|>2 \lambda^{q} \ell^{-q} \alpha_{0}
$$

at all points x, y in the closure of $\mathcal{P}_{*}(\mathbf{c})$. We put

$$
\mathbf{e}(q, p)=\max _{\mathbf{c} \in \mathcal{A}^{p}} \max _{\mathbf{a} \in \mathcal{A}^{q}} \#\left\{\mathbf{b} \in \mathcal{A}^{q} \mid \mathbf{a} \not \varliminf_{\mathbf{c}} \mathbf{b}\right\} \quad \text { and } \quad \mathbf{e}(q)=\lim _{p \rightarrow \infty} \mathbf{e}(q, p) .
$$

The main argument of the proof will be to construct norms which will satisfy a Lasota-Yorke inequality if $\mathbf{e}(q)$ is not too big for some q. This will readily imply the two main theorems if the norms have sufficiently good properties. To conclude, a transversality argument (similar to the arguments in [7]) will show that, for almost all functions f (in the sense of Theorem 4), $\mathbf{e}(q)$ is not too big for some q.

Henceforth, and until the end of Section 4, we fix a large integer q. By definition, there exists $p_{0} \geq 1$ such that $\mathbf{e}(q, p)=\mathbf{e}(q)$ for $p \geq p_{0}$. We also fix an integer $p \geq p_{0}$.

3 Perron-Frobenius operator and the norm $\|\cdot\|_{\rho}^{\dagger}$

Let $C^{r}(D)$ be the set of C^{r} functions on $S^{1} \times \mathbb{R}$ whose supports are contained in D. In this section, we define preliminary norms on the space $C^{r}(D)$ and show Lasota-Yorke type inequalities for them. For the definition of the norms, we prepare a class Ω of C^{r} curves on $S^{1} \times \mathbb{R}$. Let $\gamma: \mathcal{D}(\gamma) \rightarrow S^{1} \times \mathbb{R}$ be a continuous curve on $S^{1} \times \mathbb{R}$ whose domain of definition $\mathcal{D}(\gamma)$ is a compact interval. For $n \geq 0$, there are ℓ^{n} curves $\tilde{\gamma}_{i}: \mathcal{D}(\gamma) \rightarrow S^{1} \times \mathbb{R}, 1 \leq i \leq \ell^{n}$, such that $T^{n} \circ \tilde{\gamma}_{i}=\gamma$, each of which is called a backward image of γ by T^{n}. From the hyperbolic properties of T, we can choose positive constants $c_{i}, 1 \leq i \leq r$, so that the following holds: Let Ω be the set of C^{r} curves $\gamma: \mathcal{D}(\gamma) \rightarrow S^{1} \times \mathbb{R}$ such that

- the domain of definition $\mathcal{D}(\gamma)$ is a compact interval,
- γ is written in the form $\gamma(t)=(\pi \circ \gamma(t), t)$ and
- $\left|d^{i}(\pi \circ \gamma) / d t^{i}(s)\right| \leq c_{i}$ for $1 \leq i \leq r$ and $s \in \mathcal{D}(\gamma)$
where $\pi: S^{1} \times \mathbb{R} \rightarrow S^{1}$ is the projection to the first component. Then each backward image $\tilde{\gamma}$ of any $\gamma \in \Omega$ by T^{n} with $n \geq 1$ is the composition $\hat{\gamma} \circ g$ of a curve $\hat{\gamma} \in \Omega$ and a C^{r} diffeomorphism $g: \mathcal{D}(\gamma) \rightarrow \mathcal{D}(\hat{\gamma})$. Further, we can take a positive constant c so that the diffeomorphism g always satisfies

$$
\begin{equation*}
\left|\frac{d^{\nu}}{d s^{\nu}}\left(g^{-1}\right)(s)\right|<c \lambda^{n} \quad \text { for } s \in \mathcal{D}(\hat{\gamma}) \text { and } 1 \leq \nu \leq r \tag{5}
\end{equation*}
$$

We henceforth fix such $c, c_{i}, 1 \leq i \leq r$, and Ω as above. Moreover, the cone

$$
\begin{equation*}
\mathbf{C}=\left\{(u, v)| | u\left|\leq \alpha_{0}^{-1}\right| v \mid\right\} \tag{6}
\end{equation*}
$$

is invariant under $D T^{-1}$, whence we can take $c_{1}=\alpha_{0}^{-1}$. Finally, increasing the constants c_{2}, \ldots, c_{r} if necessary, we can assume that, whenever I is a segment in $S^{1} \times \mathbb{R}$ and J is a component of $T^{-q}(I)$ such that its tangent vectors are all contained in \mathbf{C}, then J is the image of an element of Ω (recall that q is fixed once and for all until the end of Section 4).

For a function $h \in C^{r}(D)$ and an integer $0 \leq \rho \leq r-1$, we define

$$
\|h\|_{\rho}^{\dagger}:=\max _{\alpha+\beta \leq \rho} \sup _{\gamma \in \Omega} \sup _{\varphi \in \mathcal{C}^{\alpha+\beta}(\gamma)} \int \varphi(t) \cdot \partial_{x}^{\alpha} \partial_{y}^{\beta} h(\gamma(t)) d t
$$

where $\max _{\alpha+\beta \leq \rho}$ denotes the maximum over pairs (α, β) of non-negative integers such that $\alpha+\beta \leq \rho$ and $\mathcal{C}^{s}(\gamma)$ denotes the space of C^{s} functions φ on \mathbb{R} such that $\operatorname{supp} \varphi \subset \operatorname{Int}(\mathcal{D}(\gamma))$ and $\|\varphi\|_{C^{s}} \leq 1$. This is a norm on $C^{r}(D)$. It satisfies

$$
\begin{equation*}
\|h\|_{L^{1}} \leq C\|h\|_{0}^{\dagger} \leq C\|h\|_{\rho}^{\dagger} \tag{7}
\end{equation*}
$$

The following lemma is the main ingredient of this section.

Lemma 5. There exists a constant A_{0} such that

$$
\begin{equation*}
\left\|P^{n} h\right\|_{\rho}^{\dagger} \leq A_{0} \ell^{-\rho n}\|h\|_{\rho}^{\dagger}+C(n)\|h\|_{\rho-1}^{\dagger} \quad \text { for } 1 \leq \rho \leq r-1, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|P^{n} h\right\|_{0}^{\dagger} \leq A_{0}\|h\|_{0}^{\dagger} \tag{9}
\end{equation*}
$$

for $n \geq 0$ and $h \in C^{r}(D)$, where $C(n)$ may depend on n but not on h.
Proof. Note that the iterate T^{n} for $n \geq 0$ is locally written in the form

$$
\begin{equation*}
T^{n}(x, y)=\left(\ell^{n} x, \lambda^{n} y+S\left(\ell^{n} x\right)\right) \tag{10}
\end{equation*}
$$

where S is a C^{r} function whose derivatives up to order r are bounded by α_{0}. Consider non-negative integers ρ, α, β satisfying $1 \leq \rho \leq r-1$ and $\alpha+\beta=\rho$. Differentiating both sides of

$$
P^{n} h(x, y)=\frac{1}{\lambda^{n} \ell^{n}} \sum_{\left(x^{\prime}, y^{\prime}\right) \in T^{-n}(x, y)} h\left(x^{\prime}, y^{\prime}\right)
$$

by using (10), we see that the differential $\partial_{x}^{\alpha} \partial_{y}^{\beta} P^{n} h(x, y)$ can be written as the sum of

$$
\Phi(x, y)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in T^{-n}(x, y)} \sum_{k=0}^{\alpha} Q_{k}(x) \frac{\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(x^{\prime}, y^{\prime}\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}}
$$

and

$$
\Psi(x, y)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in T^{-n}(x, y)} \sum_{a+b \leq \rho-1} Q_{a, b}(x) \frac{\partial_{x}^{a} \partial_{y}^{b} h\left(x^{\prime}, y^{\prime}\right)}{\lambda^{(1+b) n} \ell^{(1+a) n}}
$$

where $Q_{k}(\cdot)$ and $Q_{a, b}(\cdot)$ are functions of class C^{ρ} and C^{a+b} respectively. ${ }^{1}$ It is easy to check that the C^{ρ} norm of $Q_{k}(\cdot)$ and C^{a+b} norm of $Q_{a, b}(\cdot)$ are bounded by some constant.

For $\gamma \in \Omega$ and $\varphi \in \mathcal{C}^{\rho}(\gamma)$, we estimate

$$
\begin{equation*}
\int \varphi(t) \partial_{x}^{\alpha} \partial_{y}^{\beta} P^{n} h(\gamma(t)) d t=\int \varphi(t) \Phi(\gamma(t)) d t+\int \varphi(t) \Psi(\gamma(t)) d t \tag{11}
\end{equation*}
$$

Let $\gamma_{i}, 1 \leq i \leq \ell^{n}$, be the backward images of the curve γ by T^{n} and write them as the composition $\hat{\gamma}_{i} \circ g_{i}$ of $\hat{\gamma}_{i} \in \Omega$ and a C^{r} diffeomorphism g_{i}. Then we have

$$
\begin{aligned}
& \int \varphi(t) \Psi(\gamma(t)) d t=\sum_{1 \leq i \leq \ell^{n}} \sum_{a+b \leq \rho-1} \int \varphi(t) \frac{Q_{a, b}(\pi \circ \gamma(t)) \cdot \partial_{x}^{a} \partial_{y}^{b} h\left(\gamma_{i}(t)\right)}{\lambda^{(1+b) n} \ell^{(1+a) n}} d t \\
& =\sum_{1 \leq i \leq \ell^{n}} \sum_{a+b \leq \rho-1} \int \frac{\varphi\left(g_{i}^{-1}(s)\right) \cdot Q_{a, b}\left(\pi \circ \gamma \circ g_{i}^{-1}(s)\right) \cdot\left(g_{i}^{-1}\right)^{\prime}(s) \cdot \partial_{x}^{a} \partial_{y}^{b} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+b) n} \ell^{(1+a) n}} d s .
\end{aligned}
$$

[^1]Since the C^{a+b} norm of the function $s \mapsto \varphi\left(g_{i}^{-1}(s)\right) \cdot Q_{a, b}\left(\pi \circ \gamma \circ g_{i}^{-1}(s)\right) \cdot\left(g_{i}^{-1}\right)^{\prime}(s)$ is bounded by some constant (depending on n) from (5), we have

$$
\begin{equation*}
\left|\int \varphi(t) \Psi(\gamma(t)) d t\right| \leq C(n)\|h\|_{\rho-1}^{\dagger} \tag{12}
\end{equation*}
$$

where $C(n)$ may depend on n but not on h.
The first integral on the right hand side of (11) is written as

$$
\begin{aligned}
& \int \varphi(t) \Phi(\gamma(t)) d t=\sum_{1 \leq i \leq \ell^{n}} \sum_{k=0}^{\alpha} \int \varphi(t) \frac{Q_{k}\left(\pi \circ \gamma_{i}(t)\right) \cdot \partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\gamma_{i}(t)\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}} d t \\
& =\sum_{1 \leq i \leq \ell^{n}} \sum_{k=0}^{\alpha} \int \frac{\varphi\left(g_{i}^{-1}(s)\right) \cdot Q_{k}\left(\pi \circ \gamma \circ g_{i}^{-1}(s)\right) \cdot\left(g_{i}^{-1}\right)^{\prime}(s) \cdot \partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}} d s .
\end{aligned}
$$

For a while, we fix $1 \leq i \leq \ell^{n}$. Since

$$
\begin{aligned}
& \frac{d}{d s}\left(\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k-1} h\left(\hat{\gamma}_{i}(s)\right)\right) \\
& \quad=\left(\pi \circ \hat{\gamma}_{i}\right)^{\prime}(s) \cdot \partial_{x}^{\alpha-k+1} \partial_{y}^{\beta+k-1} h\left(\hat{\gamma}_{i}(s)\right)+\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\hat{\gamma}_{i}(s)\right),
\end{aligned}
$$

integration by part yields, for any $\psi \in C^{\rho}\left(\mathcal{D}\left(\hat{\gamma}_{i}\right)\right)$,

$$
\begin{aligned}
& \int \frac{d \psi}{d s}(s) \cdot \frac{\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k-1} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}} d s=-\int \tilde{\psi}(s) \frac{\partial_{x}^{\alpha-k+1} \partial_{y}^{\beta+k-1} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k-1) n} \ell^{(1+\alpha-k+1) n}} d s \\
&-\int \psi(s) \frac{\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}} d s
\end{aligned}
$$

where $\tilde{\psi}(s)=\lambda^{-n} \ell^{n}\left(\pi \circ \hat{\gamma}_{i}\right)^{\prime}(s) \psi(s)$. This implies

$$
\begin{array}{r}
\left|\int \psi(s) \frac{\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k) n} \ell(1+\alpha-k) n} d s\right| \leq\left|\int \tilde{\psi}(s) \frac{\partial_{x}^{\alpha-k+1} \partial_{y}^{\beta+k-1} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k-1) n} \ell^{(1+\alpha-k+1) n}} d s\right| \tag{13}\\
+C(n)\|\psi\|_{C^{\rho}}\|h\|_{\rho-1}^{\dagger}
\end{array}
$$

where $C(n)$ may depend on n but not on h nor ψ. Put

$$
\psi_{0}(s)=\varphi\left(g_{i}^{-1}(s)\right) \cdot Q_{k}\left(\pi \circ \gamma \circ g_{i}^{-1}(s)\right) \cdot\left(g_{i}^{-1}\right)^{\prime}(s) .
$$

By using the last inequality repeatedly, we obtain

$$
\begin{aligned}
&\left|\int \frac{\psi_{0}(s) \partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}} d s\right| \leq\left|\int \frac{\psi_{\beta+k}(s) \partial_{x}^{\rho} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{n} \ell^{(1+\rho) n}} d s\right| \\
&+\sum_{j=0}^{\beta+k-1} C(n)\left\|\psi_{j}\right\|_{C^{\rho}}\|h\|_{\rho-1}^{\dagger}
\end{aligned}
$$

where $\psi_{j}(s)=\lambda^{-n j} \ell^{n j}\left(\left(\pi \circ \hat{\gamma}_{i}\right)^{\prime}(s)\right)^{j} \psi_{0}(s)=\lambda^{-n j}\left(\left(\pi \circ \gamma \circ g_{i}^{-1}\right)^{\prime}(s)\right)^{j} \psi_{0}(s)$. Since $\left\|\psi_{j}\right\|_{C^{\rho}}<C_{0} \lambda^{n}$ for $0 \leq j \leq \beta+k$ for some constant C_{0} from (5), we get

$$
\left|\int \psi_{0}(s) \frac{\partial_{x}^{\alpha-k} \partial_{y}^{\beta+k} h\left(\hat{\gamma}_{i}(s)\right)}{\lambda^{(1+\beta+k) n} \ell^{(1+\alpha-k) n}} d t\right| \leq C_{0} \ell^{-(1+\rho) n}\|h\|_{\rho}^{\dagger}+C(n)\|h\|_{\rho-1}^{\dagger} .
$$

Summing up this inequality for $\gamma_{i}, 1 \leq i \leq \ell^{n}$, we obtain

$$
\left|\int \varphi(t) \Phi(\gamma(t)) d t\right| \leq C_{0} \ell^{-\rho n}\|h\|_{\rho}^{\dagger}+C(n)\|h\|_{\rho-1}^{\dagger}
$$

for some constant C_{0}. This and (12) give (8). The proof of (9) is obtained in a similar but much simpler manner.

4 Main Lasota-Yorke inequality

In this section, we prove the following proposition.
Proposition 6. There exists a constant B_{0} independent of q and a constant $C(q)$ such that, for all $\varphi \in C^{r}(D)$, for all integer ρ_{0} with $s+1<\rho_{0} \leq r-1$,

$$
\left\|P^{q} \varphi\right\|_{W^{s}}^{2} \leq \frac{B_{0} \mathbf{e}(q)}{\left(\lambda^{1+2 s} \ell\right)^{q}}\|\varphi\|_{W^{s}}^{2}+C(q)\|\varphi\|_{W^{s}}\|\varphi\|_{\rho_{0}}^{\dagger}
$$

First of all, we introduce some notation and prove some elementary facts concerning the Sobolev norm $\|\cdot\|_{W^{s}}$. The Fourier transform $\mathcal{F} \varphi$ of $\varphi \in C^{r}(D)$ is a function on $\mathbb{Z} \times \mathbb{R}$ defined by

$$
\mathcal{F} \varphi(\xi, \eta)=\frac{1}{\sqrt{2 \pi}} \int_{S^{1} \times \mathbb{R}} \varphi(x, y) \exp (-\mathbf{i}(2 \pi \xi x+\eta y)) d x d y
$$

For $s \geq 0$ and for $\varphi_{1}, \varphi_{2} \in C^{r}(D)$, we define

$$
\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}:=\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}^{*}+\left(\varphi_{1}, \varphi_{2}\right)_{L^{2}}
$$

where

$$
\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}^{*}:=\sum_{\xi=-\infty}^{\infty} \int_{\mathbb{R}} \mathcal{F} \varphi_{1}(\xi, \eta) \cdot \overline{\mathcal{F} \varphi_{2}(\xi, \eta)} \cdot\left((2 \pi \xi)^{2}+\eta^{2}\right)^{s} d \eta
$$

The Sobolev norm is defined by $\|\varphi\|_{W^{s}}=\sqrt{(\varphi, \varphi)_{W^{s}}}$. Note that we have

$$
\begin{equation*}
\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}^{*}=\sum_{\alpha+\beta=[s]} b_{\alpha \beta}\left(\partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi_{1}, \partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi_{2}\right)_{W^{s-[s]}}^{*} \tag{14}
\end{equation*}
$$

where $b_{\alpha \beta}$ are positive integers satisfying $\left(X^{2}+Y^{2}\right)^{[s]}=\sum_{\alpha, \beta} b_{\alpha \beta} X^{2 \alpha} Y^{2 \beta}$. Especially, if s is an integer, we have

$$
\begin{equation*}
\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}^{*}=\sum_{\alpha+\beta=s} b_{\alpha \beta} \int_{S^{1} \times \mathbb{R}} \partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi_{1}(x, y) \cdot \overline{\partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi_{2}(x, y)} d x d y \tag{15}
\end{equation*}
$$

In case s is not an integer, we shall use the following formula ([4, pp 240]): there exists a constant $B>0$ that depends only on $0<\sigma<1$ such that

$$
\begin{align*}
& \left(\varphi_{1}, \varphi_{2}\right)_{W^{\sigma}}^{*}= \tag{16}\\
& B \int_{S^{1} \times \mathbb{R}} d x d y \int_{\mathbb{R}^{2}} \frac{\left(\varphi_{1}(x+u, y+v)-\varphi_{1}(x, y)\right) \overline{\left(\varphi_{2}(x+u, y+v)-\varphi_{2}(x, y)\right)}}{\left(u^{2}+v^{2}\right)^{1+\sigma}} d u d v .
\end{align*}
$$

Lemma 7. (1) For $0 \leq t<s \leq r$ and $\epsilon>0$, there is a constant $C(\epsilon, t, s)$ such that

$$
\|\varphi\|_{W^{t}}^{2} \leq \epsilon\|\varphi\|_{W^{s}}^{2}+C(\epsilon, t, s)\|\varphi\|_{L^{1}}^{2} \quad \text { for } \varphi \in C^{r}(D) .
$$

(2) For $\epsilon>0$, there exists a constant $C(\epsilon, s)$ with the following property: if the supports of functions $\varphi_{1}, \varphi_{2} \in C^{r}(D)$ are disjoint and the distance between them is greater than ϵ, it holds

$$
\left|\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}\right| \leq C(\epsilon, s)\left\|\varphi_{1}\right\|_{L^{1}}\left\|\varphi_{2}\right\|_{L^{1}}
$$

Proof. (1) follows from the definition of the norm and the fact $\|\mathcal{F} \varphi\|_{L^{\infty}} \leq$ $\|\varphi\|_{L^{1}}$. If s is an integer, (2) is trivial since $\left(\varphi_{1}, \varphi_{2}\right)_{s}=0$ by (15). Suppose that s is not an integer. Using (14) and (16) with the assumption on the disjointness of the supports and changing variables, we can rewrite $\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}^{*}$ as

$$
-2 B \sum_{\alpha+\beta=[s]} \int_{S^{1} \times \mathbb{R}} d x d y \int_{\mathbb{R}^{2}} \frac{b_{\alpha \beta} \cdot \partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi_{1}(x+u, y+v) \cdot \overline{\partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi_{2}(x, y)}}{\left(u^{2}+v^{2}\right)^{1+\sigma}} d u d v
$$

where $\sigma=s-[s]$. Integrating $[s]$ times by part on (u, v), then changing variables and integrating again $[s]$ times by part, we obtain

$$
\left(\varphi_{1}, \varphi_{2}\right)_{W^{s}}^{*}=\int_{S^{1} \times \mathbb{R}} d x d y \int_{\mathbb{R}^{2}} \frac{\varphi_{1}(x+u, y+v) \overline{\varphi_{2}(x, y)} \tilde{B}(u, v)}{\left(u^{2}+v^{2}\right)^{1+\sigma+2[s]}} d u d v
$$

where $\tilde{B}(u, v)$ is a polynomial of u and v of order $2[s]$. With this and the assumption, we can conclude the inequality in (2).

The norm $\|\cdot\|^{\dagger}$ will be used through the following lemma. Let \mathbf{C}^{*} be the cone in \mathbb{R}^{2} defined by

$$
\mathbf{C}^{*}=\left\{(\xi, \eta) \in \mathbb{R}^{2}| | \eta\left|\leq \alpha_{0}^{-1}\right| \xi \mid\right\}
$$

so that $D T_{\mathbf{x}}^{*}\left(\mathbf{C}^{*}\right) \subset \mathbf{C}^{*}$ for $\mathbf{x} \in S^{1} \times \mathbb{R}$.
Lemma 8. Let ρ_{0} be an integer with $s+1<\rho_{0} \leq r-1$. Let \mathbf{a} and \mathbf{c} elements of \mathcal{A}^{q} and \mathcal{A}^{p} respectively, and $\chi: S^{1} \times \mathbb{R} \rightarrow \mathbb{R} a C^{\infty}$ function supported on $\mathcal{P}_{*}(\mathbf{c a}) \times \mathbb{R}$. Take $(\xi, \eta) \in \mathbb{Z} \times \mathbb{R} \backslash\{(0,0)\}$ such that, for any $\mathbf{x} \in \mathcal{P}_{*}(\mathbf{c a}) \times \mathbb{R}$, $\left(D T_{\mathbf{x}}^{q}\right)^{*}(\xi, \eta) \in \mathbf{C}^{*}$. Then, for any $\varphi \in C^{r}$,

$$
\begin{equation*}
\left|\left(\xi^{2}+\eta^{2}\right)^{\rho_{0} / 2} \mathcal{F}\left(P^{q}(\chi \cdot \varphi)\right)(\xi, \eta)\right| \leq C(q, \chi)\|\varphi\|_{\rho_{0}}^{\dagger}, \tag{17}
\end{equation*}
$$

where $C(q, \chi)$ may depend on q and χ.

Proof. Let (ξ, η) be a vector satisfying the assumption. Let Γ be the set of line segments on $S^{1} \times \mathbb{R}$ that are the intersection of a line normal to (ξ, η) with the region $\mathcal{P}_{*}(\mathbf{c}) \times \mathbb{R}$. We parametrize the segments in Γ by length. Since the support of $P^{q}(\chi \cdot \varphi)$ is contained in $D \cap\left(\mathcal{P}_{*}(\mathbf{c}) \times \mathbb{R}\right)$, the left hand side of (17) is bounded by some constant multiple of

$$
\begin{equation*}
\sup _{\gamma \in \Gamma} \int_{\gamma} \partial^{\rho_{0}} P^{q}(\chi \cdot \varphi) d t \tag{18}
\end{equation*}
$$

where ∂ is partial derivative with respect to x if $|\xi|>|\eta|$ and that with respect to y otherwise. For each $\gamma \in \Gamma$, there exists a unique backward image $\tilde{\gamma}$ of T^{q} that is contained in $\mathcal{P}_{*}(\mathbf{c a}) \times \mathbb{R}$. If $\mathbf{x} \in \tilde{\gamma}$ and u is tangent to γ at $T^{q}(\mathbf{x})$, then

$$
0=\langle u,(\xi, \eta)\rangle=\left\langle\left(D T_{\mathbf{x}}^{q}\right)^{-1} u,\left(D T_{\mathbf{x}}^{q}\right)^{*}(\xi, \eta)\right\rangle
$$

By assumption, $\left(D T_{\mathbf{x}}^{q}\right)^{*}(\xi, \eta) \in \mathbf{C}^{*}$, whence $\left(D T_{\mathbf{x}}^{q}\right)^{-1} u \in \mathbf{C}$ (by definition (6) of \mathbf{C}). Hence, $\tilde{\gamma}$ is the composition $\hat{\gamma} \circ \psi$ of an element $\hat{\gamma}$ of Ω and a C^{r} diffeomorphism ψ. By obvious estimates on the distortion of T^{m} for $0 \leq m \leq$ q and by the definition of the norm $\|\cdot\|_{\rho_{0}}^{\dagger}$, we get that (18) is bounded by $C\|\varphi\|_{\rho_{0}}^{\dagger}$.

Let $\left\{\chi_{\mathbf{c}}: S^{1} \rightarrow \mathbb{R}\right\}_{\mathbf{c} \in \mathcal{A}^{p}}$ be a C^{∞} partition of unity subordinate to the covering $\left\{\operatorname{Int} \mathcal{P}_{*}(\mathbf{c})\right\}_{\mathbf{c} \in \mathcal{A}^{p}}$, whence $\operatorname{supp}\left(\chi_{\mathbf{c}}\right) \subset \operatorname{Int} \mathcal{P}_{*}(\mathbf{c})$. Define a function $\chi_{\mathbf{c a}}$ by $\chi_{\mathbf{c a}}\left(\tau_{\mathbf{c}, \mathbf{a}}^{-q} x\right)=\chi_{\mathbf{c}}(x)$ if $x \in \mathcal{P}_{*}(\mathbf{c})$, and extend it by 0 elsewhere. Then the functions $\chi_{\mathbf{c a}}$ for $(\mathbf{a}, \mathbf{c}) \in \mathcal{A}^{q} \times \mathcal{A}^{p}$ are again a C^{∞} partition of unity. To keep the notation simple, we will still use $\chi_{\mathbf{c}}$ and $\chi_{\mathbf{c a}}$ to denote $\chi_{\mathbf{c}} \circ \pi$ and $\chi_{\mathbf{c a}} \circ \pi$.

Lemma 9. There is a constant $C>0$ such that, for any $\varphi \in C^{r}(D)$, it holds

$$
\begin{equation*}
\sum_{(\mathbf{a}, \mathbf{c}) \in \mathcal{A}^{q} \times \mathcal{A}^{p}}\left\|\chi_{\mathbf{c a}} \varphi\right\|_{W^{s}}^{2} \leq 2\|\varphi\|_{W^{s}}^{2}+C\|\varphi\|_{L^{1}}^{2} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\varphi\|_{W^{s}}^{2} \leq 7 \sum_{\mathbf{c} \in \mathcal{A}^{p}}\left\|\chi_{\mathbf{c}} \varphi\right\|_{W^{s}}^{2}+C\|\varphi\|_{L^{1}}^{2} \tag{20}
\end{equation*}
$$

Proof. Since the claims are obvious when $s=0$, we assume $s>0$. Let t be the largest integer that is (strictly) less than s. Then for every $\epsilon>0$ we have

$$
\sum_{(\mathbf{a}, \mathbf{c}) \in \mathcal{A}^{q} \times \mathcal{A}^{p}}\left\|\chi_{\mathbf{c a}} \varphi\right\|_{W^{s}}^{2} \leq(1+\epsilon)\|\varphi\|_{W^{s}}^{2}+C(\epsilon)\|\varphi\|_{W^{t}}^{2} .
$$

Indeed, we can check this by using (15) if s is an integer and by using (14) and (16) instead of (15) otherwise. Hence (19) follows from lemma $7(1)$.

From lemma $7(2)$, we have $\left(\chi_{\mathbf{c}} \varphi, \chi_{\mathbf{c}^{\prime}} \varphi\right)_{W^{s}} \leq C\left\|\chi_{\mathbf{c}} \varphi\right\|_{L^{1}}\left\|\chi_{\mathbf{c}^{\prime}} \varphi\right\|_{L^{1}} \leq C\|\varphi\|_{L^{1}}^{2}$ for some constant $C>0$ if the closures of $\mathcal{P}_{*}(\mathbf{c})$ and $\mathcal{P}_{*}\left(\mathbf{c}^{\prime}\right)$ do not intersect. Also we have $\left(\chi_{\mathbf{c}} \varphi, \chi_{\mathbf{c}^{\prime}} \varphi\right)_{W^{s}} \leq\left(\left\|\chi_{\mathbf{c}} \varphi\right\|_{W^{s}}^{2}+\left\|\chi_{\mathbf{c}^{\prime}} \varphi\right\|_{W^{s}}^{2}\right) / 2$ in general. Applying these to $\|\varphi\|_{W^{s}}^{2}=\sum_{\left(\mathbf{c}, \mathbf{c}^{\prime}\right) \in \mathcal{A}^{p} \times \mathcal{A}^{p}}\left(\chi_{\mathbf{c}} \varphi, \chi_{\mathbf{c}^{\prime}} \varphi\right)_{W^{s}}$, we obtain (20).

We start the proof of Proposition 6. From (20), we have

$$
\begin{aligned}
\left\|P^{q}(\varphi)\right\|_{W^{s}}^{2} & \leq 7 \sum_{\mathbf{c} \in \mathcal{A}^{p}}\left\|\chi_{\mathbf{c}} P^{q}(\varphi)\right\|_{W^{s}}^{2}+C\|\varphi\|_{L^{1}}^{2} \\
& \leq 7 \sum_{\mathbf{c} \in \mathcal{A}^{p}}\left\|\sum_{\mathbf{a} \in \mathcal{A}^{q}} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right\|_{W^{s}}^{2}+C\|\varphi\|_{L^{1}}^{2} .
\end{aligned}
$$

So we will estimate

$$
\left\|\sum_{\mathbf{a} \in \mathcal{A}^{q}} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right\|_{W^{s}}^{2}=\sum_{(\mathbf{a}, \mathbf{b}) \in \mathcal{A}^{q} \times \mathcal{A}^{q}}\left(P^{q}\left(\chi_{\mathbf{c a}} \varphi\right), P^{q}\left(\chi_{\mathbf{c b}} \varphi\right)\right)_{W^{s}}
$$

for $\mathbf{c} \in \mathcal{A}^{p}$.
Consider first a pair $(\mathbf{a}, \mathbf{b}) \in \mathcal{A}^{q} \times \mathcal{A}^{q}$ such that $\mathbf{a} \pitchfork_{\mathbf{c}} \mathbf{b}$. For any $(\xi, \eta) \in$ $\mathbb{Z} \times \mathbb{R} \backslash\{(0,0)\}$, this implies that either $\left(D T_{\mathbf{x}}^{q}\right)^{*}(\xi, \eta) \in \mathbf{C}^{*}$ for all $\mathbf{x} \in \mathcal{P}_{*}(\mathbf{c a}) \times \mathbb{R}$, or $\left(D T_{\mathbf{x}}^{q}\right)^{*}(\xi, \eta) \in \mathbf{C}^{*}$ for all $\mathbf{x} \in \mathcal{P}_{*}(\mathbf{c b}) \times \mathbb{R}$. Let U be the set of all $(\xi, \eta) \in \mathbb{Z} \times \mathbb{R}$ such that the first possibility holds, and $V=(\mathbb{Z} \times \mathbb{R}) \backslash U$. If $(\xi, \eta) \in U$, by Lemma 8, there exists a constant $C>0$ such that $\left|\mathcal{F} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)(\xi, \eta)\right| \leq C\left(\xi^{2}+\right.$ $\left.\eta^{2}\right)^{-\rho_{0} / 2}\|\varphi\|_{\rho_{0}}^{\dagger}$. Moreover, $\left|\mathcal{F} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)(\xi, \eta)\right| \leq C\|\varphi\|_{L^{1}}$, which is bounded by $C\|\varphi\|_{\rho_{0}}^{\dagger}$ by (7). Hence, $\left|\mathcal{F} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)(\xi, \eta)\right| \leq C\left(1+\xi^{2}+\eta^{2}\right)^{-\rho_{0} / 2}\|\varphi\|_{\rho_{0}}^{\dagger}$. So we have, for some constant C,

$$
\begin{aligned}
& \left|\sum_{\xi=-\infty}^{\infty} \int \mathbf{1}_{U}(\xi, \eta) \cdot\left(1+\xi^{2}+\eta^{2}\right)^{s} \mathcal{F} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right) \cdot \overline{\mathcal{F} P^{q}\left(\chi_{\mathbf{c b}} \varphi\right)} d \eta\right| \\
& \quad \leq C\left(\sum_{\xi=-\infty}^{\infty} \int \mathbf{1}_{U}(\xi, \eta) \cdot\left(1+\xi^{2}+\eta^{2}\right)^{s}\left|\mathcal{F} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right|^{2} d \eta\right)^{1 / 2}\left\|P^{q}\left(\chi_{\mathbf{c b}} \varphi\right)\right\|_{W^{s}} \\
& \quad \leq C\|\varphi\|_{\rho_{0}}^{\dagger}\|\varphi\|_{W^{s}}
\end{aligned}
$$

since the function $\left(1+\xi^{2}+\eta^{2}\right)^{-\rho_{0}+s}$ is integrable by the assumption $s<\rho_{0}-1$. The same inequality holds on V, and we obtain

$$
\begin{equation*}
\left|\left(P^{q}\left(\chi_{\mathbf{c a}} \varphi\right), P^{q}\left(\chi_{\mathbf{c b}} \varphi\right)\right)_{W^{s}}\right| \leq C\|\varphi\|_{\rho_{0}}^{\dagger}\|\varphi\|_{W^{s}} \tag{21}
\end{equation*}
$$

For the sum over \mathbf{a} and \mathbf{b} such that $\mathbf{a} \not \prod_{\mathbf{c}} \mathbf{b}$, we have

$$
\begin{align*}
\sum_{\mathbf{a} \prod_{\mathbf{c}} \mathbf{b}}\left(P^{q}\left(\chi_{\mathbf{c a}} \varphi\right), P^{q}\left(\chi_{\mathbf{c b}} \varphi\right)\right)_{W^{s}} & \leq \sum_{\mathbf{a} \not W_{\mathbf{c}} \mathbf{b}} \frac{\left\|P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right\|_{W^{s}}^{2}+\left\|P^{q}\left(\chi_{\mathbf{c b}} \varphi\right)\right\|_{W^{s}}^{2}}{2} \\
& \leq \mathbf{e}(q) \sum_{\mathbf{a} \in \mathcal{A}^{q}}\left\|P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right\|_{W^{s}}^{2} . \tag{22}
\end{align*}
$$

For the terms in the last sum, we have the estimate

$$
\begin{equation*}
\left\|P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right\|_{W^{s}}^{2} \leq \frac{C_{0}\left\|\chi_{\mathbf{c a}} \varphi\right\|_{W^{s}}^{2}}{\lambda^{(1+2 s) q} \ell^{q}}+C\|\varphi\|_{L^{1}}^{2} \tag{23}
\end{equation*}
$$

where C_{0} is a constant that depends only on λ, ℓ and κ. Indeed, we can check this by using (15) and (10) if s is an integer and by using (14) and (16) instead of (15) otherwise.

From (21), (22), (23), (19) and (7), we obtain

$$
\begin{aligned}
\sum_{\mathbf{c} \in \mathcal{A}^{p}}\left\|\sum_{\mathbf{a} \in \mathcal{A}^{q}} P^{q}\left(\chi_{\mathbf{c a}} \varphi\right)\right\|_{W^{s}}^{2} & \leq \frac{C_{0} \mathbf{e}(q)}{\lambda^{(1+2 s) q \ell^{q}}} \sum_{(\mathbf{a}, \mathbf{c}) \in \mathcal{A}^{q} \times \mathcal{A}^{p}}\left\|\chi_{\mathbf{c} \mathbf{a} \varphi}\right\|_{W^{s}}^{2}+C\|\varphi\|_{W^{s}}\|\varphi\|_{\rho_{0}}^{\dagger} \\
& \leq \frac{2 C_{0} \mathbf{e}(q)}{\lambda^{(1+2 s) q \ell^{q}}}\|\varphi\|_{W^{s}}^{2}+C\|\varphi\|_{W^{s}}\|\varphi\|_{\rho_{0}}^{\dagger}
\end{aligned}
$$

and hence Proposition 6.

5 Proof of the main theorems

We will use Lemma 5 and Proposition 6 to study the properties of P acting on the space $C^{r}(D)$ equipped with the norms $\|\cdot\|_{\rho_{0}}^{\dagger}$ and $\|\cdot\|_{W^{s}}$.

Lemma 10. Let $\delta \in\left(\ell^{-1}, 1\right)$. There exists $C>0$ such that, for integer $1 \leq$ $\rho \leq r-1$, for $n \in \mathbb{N}$,

$$
\left\|P^{n} h\right\|_{\rho}^{\dagger} \leq C \delta^{\rho n}\|h\|_{\rho}^{\dagger}+C\|h\|_{\rho-1}^{\dagger}
$$

Proof. We prove it by induction on ρ. Let $\rho \geq 1$. By Lemma 5, there exists $N \in \mathbb{N}$ and $C>0$ such that

$$
\begin{equation*}
\left\|P^{N} h\right\|_{\rho}^{\dagger} \leq \delta^{\rho N}\|h\|_{\rho}^{\dagger}+C\|h\|_{\rho-1}^{\dagger} \tag{24}
\end{equation*}
$$

By the inductive assumption (and Lemma 5 in the $\rho=1$ case), $\left\|P^{n} h\right\|_{\rho-1}^{\dagger} \leq$ $C\|h\|_{\rho-1}^{\dagger}$. Hence, iterating (24) gives the conclusion.

Lemma 11. Let $\delta \in\left(\ell^{-1}, 1\right)$, and let $0 \leq \rho_{1}<\rho_{0} \leq r-1$ be integers. Let $\nu\left(\rho_{0}, \rho_{1}\right)=\sum_{j=\rho_{1}+1}^{\rho_{0}} \frac{1}{j}$. There exists $C>0$ such that, for $n \in \mathbb{N}$,

$$
\left\|P^{n} h\right\|_{\rho_{0}}^{\dagger} \leq C \delta^{n / \nu\left(\rho_{0}, \rho_{1}\right)}\|h\|_{\rho_{0}}^{\dagger}+C\|h\|_{\rho_{1}}^{\dagger} .
$$

Proof. Let n be a multiple of $(r-1)$!. Then Lemma 10 implies by induction over $\rho_{1}+1 \leq \rho \leq \rho_{0}$ that

$$
\left\|P^{\left(\frac{1}{\rho}+\cdots+\frac{1}{\rho_{1}+1}\right) n} h\right\|_{\rho}^{\dagger} \leq C \delta^{n}\|h\|_{\rho}^{\dagger}+C\|h\|_{\rho_{1}}^{\dagger} .
$$

For $\rho=\rho_{0}$, we obtain $\left\|P^{\nu\left(\rho_{0}, \rho_{1}\right) n} h\right\|_{\rho_{0}}^{\dagger} \leq C \delta^{n}\|h\|_{\rho_{0}}^{\dagger}+C\|h\|_{\rho_{1}}^{\dagger}$.
Theorem 12. Assume that $\frac{B_{0} \mathbf{e}(q)}{\left(\lambda^{1+2 s} \ell\right)^{q}}<1$. Let $0 \leq \rho_{1}<\rho_{0} \leq r-1$ be integers with $s<\rho_{0}-1$, and let $\nu=\nu\left(\rho_{0}, \rho_{1}\right)$ be as in the previous lemma. Let

$$
\gamma \in\left(\max \left(\ell^{-1 / \nu}, \sqrt{\frac{\left(B_{0} \mathbf{e}(q)\right)^{1 / q}}{\lambda^{1+2 s} \ell}}\right), 1\right) .
$$

Let $\|\varphi\|:=\|\varphi\|_{W^{s}}+\|\varphi\|_{\rho_{0}}^{\dagger}$. There exists a constant C such that, for all $n \in \mathbb{N}$,

$$
\left\|P^{n} \varphi\right\| \leq C \gamma^{n}\|\varphi\|+C\|\varphi\|_{\rho_{1}}^{\dagger}
$$

Proof. Since $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ and $\sqrt{a b} \leq \epsilon a+\epsilon^{-1} b$, Proposition 6 implies

$$
\left\|P^{q} \varphi\right\|_{W^{s}} \leq\left(\frac{\left(B_{0} \mathbf{e}(q)\right)^{1 / q}}{\lambda^{1+2 s} \ell}\right)^{q / 2}\|\varphi\|_{W^{s}}+\epsilon\|\varphi\|_{W^{s}}+C(\epsilon)\|\varphi\|_{\rho_{0}}^{\dagger}
$$

Since $\left(\frac{\left(B_{0} \mathbf{e}(q)\right)^{1 / q}}{\lambda^{1+2 s} \ell}\right)^{q / 2}<\gamma^{q}$, taking ϵ small enough yields

$$
\left\|P^{q} \varphi\right\|_{W^{s}} \leq \gamma^{q}\|\varphi\|_{W^{s}}+C\|\varphi\|_{\rho_{0}}^{\dagger} .
$$

Iterating this equation K times gives

$$
\begin{equation*}
\left\|P^{K q} \varphi\right\|_{W^{s}} \leq \gamma^{K q}\|\varphi\|_{W^{s}}+C(K)\|\varphi\|_{\rho_{0}}^{\dagger} \tag{25}
\end{equation*}
$$

for some constant $C(K)$. If K is large enough, the choice of γ and Lemma 11 also yield

$$
\begin{equation*}
\left\|P^{K q} \varphi\right\|_{\rho_{0}}^{\dagger} \leq \frac{\gamma^{K q}}{2}\|\varphi\|_{\rho_{0}}^{\dagger}+C^{\prime}(K)\|\varphi\|_{\rho_{1}}^{\dagger} . \tag{26}
\end{equation*}
$$

Fix such a K, and define a norm $\|\varphi\|^{*}:=\|\varphi\|_{W^{s}}+2 C(K) \gamma^{-K q}\|\varphi\|_{\rho_{0}}^{\dagger}$. Adding (25) and (26) gives

$$
\left\|P^{K q} \varphi\right\|^{*} \leq \gamma^{K q}\|\varphi\|^{*}+C\|\varphi\|_{\rho_{1}}^{\dagger}
$$

Iterating this equation (and remembering $\left\|P^{n} \varphi\right\|_{\rho_{1}}^{\dagger} \leq C\|\varphi\|_{\rho_{1}}^{\dagger}$ for some constant C independent of n, by Lemma 10), we obtain the conclusion of the theorem for the norm $\|\cdot\|^{*}$. Since it is equivalent to the original norm $\|\cdot\|$, this concludes the proof.

Corollary 13. If $B_{0} \mathbf{e}(q)<\left(\lambda^{1+2 s} \ell\right)^{q}$, the conclusion of Theorem 1 holds for the transformation T.
Proof. Take $\rho_{0}=r-1$ and $\rho_{1}=0$. They satisfy the assumptions of Theorem 12 since $s<r-2$.

We fix a non-negative function $\Psi_{0} \in C^{r}(D)$ such that $\int \Psi_{0} d$ Leb $=1$. Put $\nu_{0}=\Psi_{0} \cdot$ Leb and $\Psi_{n}=P^{n} \Psi_{0}$ for $n \geq 1$. From (2), the density of $T_{*}^{n} \nu_{0}$ is Ψ_{n}. As the sequence $T_{*}^{n} \nu_{0}$ converges to the SBR measure μ for T weakly, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\Psi_{n}, \varphi\right)_{L^{2}}=\int \varphi d \mu \tag{27}
\end{equation*}
$$

for any continuous function φ on $S^{1} \times \mathbb{R}$ with compact support. By Theorem 12, the sequence Ψ_{n} for $n \geq 1$ is bounded with respect to the norm $\|\cdot\|$, hence also for the norm $\|\cdot\|_{W^{s}}$. Then there is a subsequence $n(i) \rightarrow \infty$ such that $\Psi_{n(i)}$ converges weakly to some element Ψ_{∞} in the Hilbert space $W^{s}\left(S^{1} \times \mathbb{R}\right)$. This and (27) imply $\int \Psi_{\infty} \varphi d$ Leb $=\int \varphi d \mu$ for any continuous function φ on $S^{1} \times \mathbb{R}$ with compact support. Thereby the density of the SBR measure μ is $\Psi_{\infty} \in W^{s}\left(S^{1} \times \mathbb{R}\right)$.

Corollary 14. Let $1 / 2<s<r-2$. Assume that $\frac{B_{0} \mathbf{e}(q)}{\left(\lambda^{1+2 s} \ell\right)^{q}}<1$. If

$$
\gamma \in\left(\sqrt{\frac{\left(B_{0} \mathbf{e}(q)\right)^{1 / q}}{\lambda^{1+2 s} \ell}}, 1\right)
$$

the conclusion of Theorem 3 holds for the transformation T and this γ.
Proof. Let ρ_{0} be the smallest integer such that $s<\rho_{0}-1$, and ρ_{1} the largest integer such that $\rho_{1}<s-1 / 2$. They satisfy the assumptions of Theorem 12. Moreover, $\nu\left(\rho_{0}, \rho_{1}\right) \leq 1+\frac{1}{2}+\frac{1}{3}<2$. Hence, $\ell^{-1 / \nu}<\frac{1}{\sqrt{\ell}}<\sqrt{\frac{\left(B_{0} \mathbf{e}(q)\right)^{1 / q}}{\lambda^{1+2 s} \ell}}$.

Let \mathcal{B} be the completion of $C^{r}(D)$ with respect to the norm $\|\cdot\|$. It is a Banach space included in $W^{s}(D)$ and containing $C^{r-1}(D)$. Theorem 12 gives a Lasota-Yorke inequality between \mathcal{B} and the space \mathcal{B}^{\prime} obtained by completing $C^{r}(D)$ for the norm $\|\cdot\|_{\rho_{1}}^{\dagger}$. Hence, the result is a standard consequence of Hennion's Theorem [5], if we can prove that the unit ball of \mathcal{B} is relatively compact in \mathcal{B}^{\prime}.

The embedding of \mathcal{B} in $W^{s}(D)$ is continuous. Let $t \in\left(\rho_{1}+1 / 2, s\right)$. The embedding of $W^{s}(D)$ in $W^{t}(D)$ is compact by Sobolev's embedding theorem. To conclude, it is sufficient to check that the injection $W^{t}(D) \rightarrow \mathcal{B}^{\prime}$ is continuous. Since $t>\rho_{1}+1 / 2$, [1, Theorem 7.58 (iii)] (applied with $p=q=2, k=1$ and $n=2$) proves that, for any smooth curve $\mathcal{C} \subset D$, for any $\varphi \in W^{t}(D)$,

$$
\left\|\partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi\right\|_{L^{2}(\mathcal{C})} \leq C(\mathcal{C})\|\varphi\|_{W^{t}(D)}
$$

whenever α and β are non-negative integers satisfying $\alpha+\beta \leq \rho_{1}$. The constant $C(\mathcal{C})$ can be chosen uniformly over all curves of Ω, and we obtain $\|\varphi\|_{\rho_{1}}^{\dagger} \leq$ $C\|\varphi\|_{W^{t}(D)}$.

For $\beta>0, \kappa>0$ and $\lambda \in(0,1)$, let

$$
\mathcal{E}(\beta, \kappa, \lambda)=\left\{f \in \mathcal{U}_{\kappa} ; \limsup _{q \rightarrow \infty} \frac{1}{q} \log \mathbf{e}(q)>\beta\right\}
$$

Note that this definition depends on κ and λ through $\mathbf{e}(q)$, since $\mathbf{e}(q)$ is defined in terms of $\alpha_{0}=\kappa /(1-\lambda)$.

Since the quantity $\mathbf{e}(q)$ depends on $f \in \mathcal{U}_{\kappa}$ upper semi-continuously and since we can take arbitrarily large κ in the beginning, Theorems 1,3 and 4 follow from Corollaries 13 and 14 and the next proposition.

Proposition 15. For any $\beta>0$ and $\lambda>0$, there is a finite collection of C^{∞} functions $\varphi_{i}: S^{1} \rightarrow \mathbb{R}, i=1,2, \cdots, m$ and a constant $D_{0}>0$ such that, for any $\kappa>D_{0}$ and any C^{r} function $g \in \mathcal{U}_{\kappa-D_{0}}$, the subset

$$
\left\{\left(t_{1}, t_{2}, \cdots, t_{m}\right) \in[-1,1]^{m} \mid g+\sum_{i=1}^{m} t_{i} \varphi_{i} \in \mathcal{E}(\beta, \kappa, \lambda)\right\}
$$

is a Lebesgue null subset on $[-1,1]^{m}$.
This proposition has essentially been proved in [7]. For completeness, we give a proof of it in the next section.

6 Genericity of the transversality condition

In this section, we give a proof of Proposition 15. For a C^{2} function g and C^{∞} functions $\varphi_{i}, 1 \leq i \leq m$, on S^{1}, we consider a family of functions

$$
\begin{equation*}
f_{\mathbf{t}}(x)=g(x)+\sum_{i=1}^{m} t_{i} \varphi_{i}(x): S^{1} \rightarrow \mathbb{R} \tag{28}
\end{equation*}
$$

and the corresponding family of maps

$$
\begin{equation*}
T_{\mathbf{t}}: S^{1} \times \mathbb{R} \rightarrow S^{1} \times \mathbb{R}, \quad T_{\mathbf{t}}(x, y)=\left(\ell x, \lambda y+f_{\mathbf{t}}(x)\right) \tag{29}
\end{equation*}
$$

with parameters $\mathbf{t}=\left(t_{1}, t_{2}, \cdots, t_{m}\right) \in[-1,1]^{m} \subset \mathbb{R}^{m}$. Put

$$
\begin{equation*}
S(x, \mathbf{a} ; \mathbf{t})=\sum_{i=1}^{n} \lambda^{i-1} f_{\mathbf{t}}\left([\mathbf{a}]_{i}(x)\right) \tag{30}
\end{equation*}
$$

for $\mathbf{t} \in[-1,1]^{m}$ and a word $\mathbf{a} \in \mathcal{A}^{n}$ of length $1 \leq n \leq \infty$. For a point $x \in S^{1}$ and a sequence $\sigma=\left(\mathbf{a}_{0}, \mathbf{a}_{1}, \cdots, \mathbf{a}_{k}\right)$ of elements in \mathcal{A}^{∞}, we consider an affine $\operatorname{map} G_{x, \sigma}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ defined by

$$
\begin{equation*}
G_{x, \sigma}(\mathbf{t})=\left(\frac{d}{d x} S\left(x, \mathbf{a}_{i} ; \mathbf{t}\right)-\frac{d}{d x} S\left(x, \mathbf{a}_{0} ; \mathbf{t}\right)\right)_{i=1,2, \cdots, k} \tag{31}
\end{equation*}
$$

If the affine map $G_{x, \sigma}$ is surjective, we define its Jacobian by

$$
\operatorname{Jac}\left(G_{x, \sigma}\right)=\frac{\operatorname{Leb}_{k}\left([0,1]^{k}\right)}{\operatorname{Leb}_{k}\left(G_{x, \sigma}^{-1}\left([0,1]^{k}\right) \cap \operatorname{Ker}\left(G_{x, \sigma}\right)^{\perp}\right)}
$$

where Leb_{k} is the k-dimensional Hausdorff measure and $\operatorname{Ker}\left(G_{x, \sigma}\right)^{\perp}$ is the orthogonal complement of the kernel of the linear part of $G_{x, \sigma}$, whence

$$
\begin{equation*}
\operatorname{Leb}\left(G_{x, \sigma}^{-1}(Y) \cap[-1,1]^{m}\right) \leq C_{0} \frac{\operatorname{Leb}(Y)}{\operatorname{Jac}(L)} \quad \text { for any Borel subset } Y \subset \mathbb{R}^{k} \tag{32}
\end{equation*}
$$

where C_{0} is a constant that depends only on the dimensions m and k.
For $0<\gamma \leq 1, \delta>0$ and $n \geq 1$, we say that the family $T_{\mathbf{t}}^{n}$ is (γ, δ)-generic if the following property holds: for any finite sequence $\left\{\mathbf{a}_{i}\right\}_{i=0}^{d}$ in \mathcal{A}^{∞} such that $\left[\mathbf{a}_{i}\right]_{n}$ are mutually distinct, for any $x \in S^{1}$ and for any integer $0<k<\gamma d$, we can choose a subsequence $\sigma=\left(\mathbf{b}_{0}, \mathbf{b}_{1}, \cdots, \mathbf{b}_{k}\right)$ of length k among $\left\{\mathbf{a}_{i}\right\}_{i=0}^{d}$ so that $G_{x, \sigma}$ is surjective and satisfies $\operatorname{Jac}\left(G_{x, \sigma}\right)>\delta$. It is proved in [7] that

Proposition 16 ([7], Proposition 15). For given $0<\lambda<1$, $\ell \geq 2$ and $n \geq 1$, there exists a finite collection of C^{∞} functions $\varphi_{i}, 1 \leq i \leq m$, such that the corresponding family $T_{\mathbf{t}}^{n}$ is $(1 /(n+1), 1 / 2)$-generic, regardless of the C^{2} function g.

Recall that we are considering fixed λ and ℓ. Let $\beta>0$ be the positive number in the statement of Proposition 15. We can and do take integers $N_{0} \geq 2$, $d_{0} \geq 2$ and $n_{0} \geq 1$ such that

$$
\begin{equation*}
\lambda^{N_{0}-1} \ell^{2}<1, \quad d_{0} /\left(n_{0}+1\right)>N_{0}+1 \quad \text { and } \quad\left(d_{0}+1\right) \exp \left(-\beta n_{0} / 2\right)<1 / 2 \tag{33}
\end{equation*}
$$

Let $\varphi_{i}, 1 \leq i \leq m$, be the C^{∞} functions in the conclusion of Proposition 16 for these λ, ℓ and $n=n_{0}$. Let $D_{0}=\sum_{i=1}^{m}\left\|\varphi_{i}\right\|_{C^{r}}$. Hence, if $g \in \mathcal{U}_{\kappa-D_{0}}$ and $\left(t_{1}, \ldots, t_{m}\right) \in[-1,1]^{m}$, then $g+\sum t_{i} \varphi_{i} \in \mathcal{U}_{\kappa}$. In order to prove the conclusion of Proposition 15 , we pick arbitrary $g \in \mathcal{U}_{\kappa-D_{0}}$ and consider the family $T_{\mathbf{t}}$ defined by (28) and (29).

For an integer q, we put $p(q)=[q \log (\ell / \lambda) / \log \ell]+1$. For a word \mathbf{c} of finite length, let $x_{\mathbf{c}}$ be the left end of $\mathcal{P}(\mathbf{c})$. We fix a word $\mathbf{a}_{\infty} \in \mathcal{A}^{\infty}$ arbitrarily and, for any word \mathbf{a} of finite length, we put $\overline{\mathbf{a}}=\mathbf{a} \mathbf{a}_{\infty}$.

Lemma 17. If $f_{\mathbf{t}} \in \mathcal{E}(\beta, \kappa)$, we can take arbitrarily large integer q such that there exist $1+d_{0}$ words $\mathbf{a}_{i}, 0 \leq i \leq d_{0}$, in \mathcal{A}^{q} and a word $\mathbf{c} \in \mathcal{A}^{p(q)}$ satisfying
(E1) $\left|\frac{d}{d x} S\left(x_{\mathbf{c}}, \overline{\mathbf{a}}_{i} ; \mathbf{t}\right)-\frac{d}{d x} S\left(x_{\mathbf{c}}, \overline{\mathbf{a}}_{j} ; \mathbf{t}\right)\right| \leq 8 \lambda^{q} \ell^{-q} \alpha_{0} \quad$ for any $1 \leq i, j \leq d_{0}$, and
(E2) $\left[\mathbf{a}_{i}\right]_{n_{0}} \neq\left[\mathbf{a}_{j}\right]_{n_{0}}$ if $i \neq j$.
Proof. By assumption, we can take an arbitrarily large \tilde{q} such that there exist a point $x \in S^{1}$ and subset $E \subset \mathcal{A}^{\tilde{q}}$ such that $\# E \geq \exp (\beta \tilde{q})$ and

$$
\begin{equation*}
\left|\frac{d}{d x} S(x, \mathbf{a} ; \mathbf{t})-\frac{d}{d x} S(x, \mathbf{b} ; \mathbf{t})\right| \leq 4 \lambda^{\tilde{q}} \ell^{-\tilde{q}} \alpha_{0} \quad \text { for } \mathbf{a} \text { and } \mathbf{b} \text { in } E . \tag{34}
\end{equation*}
$$

For each $0 \leq j \leq\left[\tilde{q} / n_{0}\right]$, we introduce an equivalence relation \sim_{j} on E such that $\mathbf{a} \sim_{j} \mathbf{b}$ if and only if $[\mathbf{a}]_{j n_{0}}=[\mathbf{b}]_{j n_{0}}$, and let

$$
\nu(j)=\max _{\mathbf{a} \in E} \#\left\{\mathbf{b} \in E \mid \mathbf{b} \sim_{j} \mathbf{a}\right\} .
$$

Since $\nu(0)=\# E \geq \exp (\beta \tilde{q})$ while $\nu(j) \leq \ell^{\tilde{q}-j n_{0}}$ obviously, there exists $0 \leq$ $j \leq\left[\tilde{q} / n_{0}\right]$ such that $\nu(j+1)<\exp \left(-\beta n_{0} / 2\right) \nu(j)$. Let j_{*} be the minimum of such integers j and put $q=\tilde{q}-n_{0} j_{*}$. Then we have $\nu\left(j_{*}\right) \geq \exp (\beta q)$ and $q \geq \beta \tilde{q} /(2 \log \ell)$. The equivalence class H w.r.t. $\sim_{j_{*}}$ of maximum cardinality contains at least $\left(d_{0}+1\right)$ non-empty equivalence classes w.r.t. $\sim_{j_{*}+1}$, because

$$
\nu\left(j_{*}\right)-\left(d_{0}+1\right) \nu\left(j_{*}+1\right)>\nu\left(j_{*}\right)-\left(d_{0}+1\right) \exp \left(-\beta n_{0} / 2\right) \nu\left(j_{*}\right)>0
$$

by (33). So we can take $\mathbf{b} \in \mathcal{A}^{\tilde{q}-q}$ and $\mathbf{a}_{i} \in \mathcal{A}^{q}, 0 \leq i \leq d$, such that $\mathbf{b} \mathbf{a}_{i} \in H$ for $0 \leq i \leq d_{0}$ and that (E2) holds. Put $x^{\prime}=\mathbf{b}(x)$. It follows from (34) that

$$
\begin{equation*}
\left|\frac{d}{d x} S\left(x^{\prime}, \mathbf{a}_{i} ; \mathbf{t}\right)-\frac{d}{d x} S\left(x^{\prime}, \mathbf{a}_{j} ; \mathbf{t}\right)\right| \leq 4 \lambda^{q} \ell^{-q} \alpha_{0} \quad \text { for } 0 \leq i, j \leq d_{0} . \tag{35}
\end{equation*}
$$

Take $\mathbf{c} \in \mathcal{A}^{p(q)}$ such that $x^{\prime} \in \mathcal{P}(\mathbf{c})$. Since the distance between $x_{\mathbf{c}}$ and x^{\prime} is bounded by $\ell^{-p(q)} \leq \lambda^{q} / \ell^{q}$, the condition (E1) follows from (35) and (4).

Let \mathcal{B}^{q} be the set of pairs (σ, \mathbf{c}) of a sequence $\sigma=\left(\mathbf{b}_{i}\right)_{i=0}^{N_{0}}$ in \mathcal{A}^{q} and $\mathbf{c} \in$ $\mathcal{A}^{p(q)}$ such that $\operatorname{Jac}\left(G_{x_{\mathbf{c}}, \bar{\sigma}}\right)>1 / 2$, where $\bar{\sigma}=\left(\overline{\mathbf{b}}_{i}\right)_{i=0}^{N_{0}}$. For $(\sigma, \mathbf{c}) \in \mathcal{B}^{q}$ with $\sigma=\left(\mathbf{b}_{i}\right)_{i=0}^{N_{0}}$, we put

$$
Y(\sigma, \mathbf{c})=G_{x_{\mathbf{c}}, \bar{\sigma}}^{-1}\left(\left[-8(\lambda / \ell)^{q} \alpha_{0}, 8(\lambda / \ell)^{q} \alpha_{0}\right]^{N_{0}}\right)
$$

and $Y(q):=\bigcup_{(\sigma, \mathbf{c}) \in \mathcal{B}^{q}} Y(\sigma, \mathbf{c})$. Since the family $T_{\mathbf{t}}^{n_{0}}$ is $\left(1 /\left(n_{0}+1\right), 1 / 2\right)$-generic, the conclusion of Lemma 17 and the second condition in (33) imply that, if $f_{\mathbf{t}} \in \mathcal{E}(\beta, \kappa, \lambda)$, the parameter \mathbf{t} is contained in $Y(q)$ for infinitely many q. Using (32) and the simple estimate $\# \mathcal{B}^{q} \leq \ell^{q\left(N_{0}+1\right)+p(q)}$, we get

$$
\operatorname{Leb}(Y(q)) \leq C \ell^{q\left(N_{0}+1\right)+p(q)}(\lambda / \ell)^{q N_{0}}
$$

for some constant $C>0$. By the first condition in (33), the left hand side converges to 0 exponentially fast as $q \rightarrow \infty$. Therefore we obtain the conclusion of Proposition 15 by Borel-Cantelli lemma.

References

[1] Adams, R.A. Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, 1975.
[2] Bamón, R., Kiwi, J., Rivera-Letelier, J. and Urzúa, R., On the topology of solenoidal attractors of the cylinder, preprint, Math. ArXiv math.DS/0403523.
[3] Gouëzel, S. and Liverani, C., Banach spaces adapted to Anosov systems, preprint, Math. ArXiv math.DS/0405278
[4] Hörmander, L. The analysis of linear partial differential operators. I. 2nd edition, Springer-Verlag, Berlin, 1990
[5] Hennion, H., Sur un théorème spectral et son application aux noyaux lipschitziens. Proc. Amer. Math. Soc. 118, 627-634 (1993)
[6] Rams, M., Absolute continuity for the SBR measure for non-linear fat baker maps. Nonlinearity, 16, 1649-1655 (2003)
[7] Tsujii, M., Fat solenoidal attractors. Nonlinearity, 14, 1011-1027 (2001)

[^0]: * Address: Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie-Boîte courrier 188, 75252-Paris Cedex 05, France; Email: artur@ccr.jussieu.fr
 ${ }^{\dagger}$ Address: Département de Mathématiques et Applications, Ecole Normale Supérieure, 45 rue d'Ulm, Paris, France; Email: Sebastien.Gouezel@ens.fr
 ${ }^{\ddagger}$ Address: Department of Mathematics, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan; Email: tsujii@math.sci.hokudai.ac.jp

[^1]: ${ }^{1}$ Strictly speaking, the functions Q_{k} and $Q_{a, b}$ are only defined on the ℓ^{n}-fold covering of S^{1}, since their definition involves the choice of an inverse branch, but we will keep the dependence on the choice of the inverse branch implicit in the notation.

