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ARTUR AVILA

Abstract. In the theory of ergodic one-dimensional Schrödinger operators,

ac spectrum has been traditionally expected to be very rigid. Two key conjec-

tures in this direction state, on one hand, that ac spectrum demands almost
periodicity of the potential, and, on the other hand, that the eigenfunctions

are almost surely bounded in the essential suport of the ac spectrum. We show

how the repeated slow deformation of periodic potentials can be used to break
rigidity, and disprove both conjectures.

1. Introduction

In this paper we consider one-dimensional Schrödinger operators, both on the
real line R and on the lattice Z. In the first case, they act on L2(R) and have the
form

(1) (Hu)(t) = − d2

dt2
u(t) + V (t)u(t),

while in the second case they act on `2(Z) and have the form

(2) (Hu)n = un+1 + un−1 + V (n)un.

We are interested in the so-called ergodic case, where one considers a mea-
sured family of potentials defined by the evaluation of a sampling function along
the orbits of a dynamical system. Thus, in the first (continuum) case, we have
V (t) = v(Ft(x)), where Ft is an ergodic flow and in the second (discrete) case
V (n) = v(fn(x)), where f is an ergodic invertible map. We denote the implied fixed
probability measure by σ. We will also assume below that flows, maps, and sampling
functions are continuous in some compact phase space X and that suppσ = X.

By general reasoning, the spectrum of ergodic operators is almost surely con-
stant. In general, the spectral measure is not almost surely independent of x ∈ X,
but the ac part of the spectral measure is. There is much work dedicated to the un-
derstanding of the ac part of the spectral measure, with most results so far pointing
to very rigid behavior [K], [DeS], [CJ] (see also [R] for recent developments regard-
ing non-ergodic potentials). Two natural problems in this direction are:

Problem 1.1. Does the existence of an absolutely continuous component of the
spectrum (for almost every x ∈ X) imply that the potential is almost periodic?

We recall that an almost periodic potential is one that can be obtained by eval-
uating a continuous sampling function along an ergodic translation of a compact
Abelian group. Another way of formulating this is that the dynamics has a topo-
logical almost periodic factor, through which the sampling function factorizes.
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Problem 1.2. Are all eigenfunctions bounded, for almost every energy, with respect
to the ac part of the spectral measure (for almost every x ∈ X)?

Here, by an eigenfunction associated to energy E we mean a generalized solution
of Hu = Eu (i.e., without the requirement of belonging to L2(R) or `2(Z)).

For the first problem, an affirmative answer has been explicitly conjectured in
the discrete case, in what is now known as the Kotani-Last Conjecture (recently
popularized in [D], [J], and [S], see also the earlier [KK])

For the second problem, and also in the discrete case, the affirmative answer
would be a particular case of the so-called Schrödinger Conjecture (see [V], §1.7),
according to which eigenfunctions should be bounded for almost every energy with
respect to the ac part of the spectral measure, for any (possibly non-ergodic) po-
tential. We note that in the continuum case, the corresponding general statement
was known to be false if one does not assume the potential to be bounded: The
famous counterexample in [MMG] is indeed unbounded both from above and from
below (it is also sparse, hence non-ergodic). As it turns out, in such setup the abso-
lutely continuous spectrum is not constrained by any strict “Parseval-like” bound
on the average size of eigenfunctions.1 Such a bound (10) is a key difficulty in
our setup, and it is what makes it more similar to another situation of interest
(square-integrable potentials), as we will discuss.

Remark 1.3. Here is one example of how those conjectures could be used to de-
duce further regularity properties. It is known that, almost surely in the essential
support of ac spectrum, there is a pair of linearly independent complex-conjugate
eigenfunctions u, u, satisfying |u(t)| = U(Ft(x)) or |un| = U(fn(x)), according
to the setting, with U : X → (0,∞) some L2-function (depending on E but in-
dependent of x), see [DeS]. If the dynamics is minimal then boundedness of the
eigenfunctions implies that U is in fact continuous [Y], so if the dynamics is almost
periodic then the absolute value of these eigenfunctions is itself almost periodic.

Remark 1.4. There are of course many examples of almost periodic potentials with
ac spectrum, dating from the KAM based work of Dinaburg-Sinai [DS]. KAM
approaches do tend to produce bounded eigenfunctions. In [AFK], it has been
proved that if f is an irrational rotation of the circle, and v is analytic, then (up
to taking some sufficiently deep renormalization) a non-standard KAM scheme
converges almost everywhere in the essential support of the ac part of the spectral
measure, so that eigenfunctions are indeed bounded as predicted by the Schrödinger
Conjecture.

In this paper we give negative answers to both problems, in both the discrete
and the continuous setting.

Theorem 1. There exists a uniquely ergodic map, a sampling function, and a
positive measure set Λ ⊂ R such that for almost every x, Λ is contained in the
essential support of the absolutely continuous spectrum, and for every E ∈ Λ and
almost every x, any non-trivial eigenfunction is unbounded.2

1Particularly, moments of growth do not have to be spread out according to the energy, and

in fact in [MMG] many eigenfunctions become simultaneously large (in short bursts).
2Notice that, by general reasoning, for any E in the spectrum there exists always some x

with a one-dimensional subspace of bounded eigenfunctions. On the other hand, if the dynamics
is minimal, then the existence of an unbounded eigenfunction for some x implies that there are

unbounded eigenfunctions for every x (with the same E).
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Theorem 2. There exists a weak mixing uniquely ergodic map and a non-constant
sampling function such that the spectrum has an absolutely continuous component
for every x.

Theorem 3. There exists a uniquely ergodic flow and a sampling function, such
that the spectrum is purely absolutely continuous for almost every x, and for almost
every energy in the spectrum, and almost every x, any non-trivial eigenfunction is
unbounded.

Theorem 4. There exists a weak mixing uniquely ergodic flow and a non-constant
sampling function, such that the spectrum is purely absolutely continuous for every
x.

We recall that weak mixing means the absence of a measurable almost periodic
factor. In particular, potentials associated to non-constant sampling functions are
never almost periodic.

Remark 1.5. One may wonder whether there is some natural condition (stronger
than lack of almost periodicity) on the dynamics that would prevent the existence
of ac spectrum. After we announced in 2009 the earliest result of this work (a less
precise version of Theorem 2), Svetlana Jitomirskaya asked us whether weak mixing
would be such a condition. Though our original (unpublished) construction did not
yield weak mixing, the underlying mechanism could indeed be used to answer her
question, as shown in the argument we present here.

Remark 1.6. Unbounded eigenfunctions can appear with or without almost peri-
odicity: the example provided in the proof of Theorem 3 can be shown to be weak
mixing (though it is not done here), while the example provided in the proof of
Theorem 1 is almost periodic. In the other direction, the proofs of Theorems 2 and
4 (see Remarks 6.5 and 4.8) show that bounded eigenfunctions are also compatible
with weak mixing.

Our methods do give considerable more control on the continuum case (in that
we get control on the entire spectrum). The arguments are also much simpler. For
this reason, we first develop all arguments in full detail for the continuum case. We
then describe more leisurely the additional complications involved in the discrete
case.

1.1. Further perspective. Besides its natural interest in the theory of orthogonal
polynomials and one-dimensional Schrödinger operators, much of the motivation
behind the Schrödinger Conjecture lies in its interpretation as a generalization of the
sought after non-linear version of Carleson’s Theorem about pointwise convergence
of the Fourier series of an L2(R/Z) function. Recall that this theorem (which
solved Lusin’s Conjecture) is equivalent to the statement that for any sequence of
complex numbers {λn}n∈N with

∑
|λn|2 < ∞, and for almost every θ ∈ R, the

series
∑
λne

2πinθ is bounded.
One simple formulation of a (conjectural) non-linear version of Carleson’s The-

orem goes as follows: for any sequence of SL(2,R) matrices {Aj}j∈N such that

(3)
∑

(ln ‖Aj‖)2 <∞

and for almost every θ ∈ R, the sequence A(n)(θ) = AnRθ · · ·A1Rθ is bounded
(here Rθ is the rotation of angle 2πθ). To see the connection, notice that it is
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enough (by polar decomposition) to consider the case where Aj = DeλjRβj , where

βj ∈ R is arbitrary and λj ≥ 0 satisfy
∑
|λj |2 <∞. Expand

(4)

(
eλj 0
0 e−λj

)
=
∑
k≥0

λkj
k!

(
1 0
0 (−1)k

)
,

and then expand the product to get

(5) A(n)(θ) =
∑
m≥0

Bm,n(θ),

where the coefficients of Bm,n are homogeneous polynomials of degree m on the λj .
Then a direct computation gives, with αj =

∑
j′≤j βj′ , B0,n = Rnθ+αn (which thus

has unit norm), while

(6) B1,n = Rnθ+αn

n∑
j=1

λj

(
cos 4π(αj + jθ) − sin 4π(αj + jθ)
− sin 4π(αj + jθ) − cos 4π(αj + jθ)

)
,

so that Carleson’s Theorem is equivalent to the boundedness of the B1,n.

One reason to hope for the almost sure boundedness of the sequence A(n)(θ) is

the validity of an analogue of Parseval’s Theorem: taking N(A) = ln ‖A‖+‖A‖
−1

2

(which is asymptotic to (ln ‖A‖)2 when ‖A‖ is close to 1), we get

(7)

∫
N(A(n)(θ))dθ =

n∑
j=1

N(Aj).

This presents a quite strict constraint to the construction of any counterexample.
Indeed, (7) implies that ‖A(n)(θ)‖ is often bounded: any growth one sees in a certain
moment must be compensated later. This oscillation is rather hard to achieve in
the nonlinear setting: the product of two large SL(2,R) matrices is usually even
larger than each factor, unless there is some rather precise alignement between
their polar decompositions. However, any such alignement would appear likely to
be destroyed when θ changes. (Another way to see the difficulty it to recall that
the Brownian motion in the hyperbolic plane SL(2,R)/SO(2,R) diverges linearly,
while in the real line it is recurrent.)

There is nothing sacred about the above setup (which we chose to start with
only for the transparency of the various formulas), and there are many alternative
settings where a non-linear analogue of Carleson’s Theorem is expected to hold.
The basic theme to keep in ming is the goal of showing almost sure boundedness
of square-summable perturbations of a parametrized infinite product of elliptic
matrices, in some setting where some analogue of Parseval’s Theorem holds. For
a more detailed discussion (with slightly different setup), see the work of Muscalu-
Tao-Thiele [MTT1].

1.1.1. Schrödinger setting. The eigenfunctions of discrete Schrödinger operators (2)
with eigenvalue E satisfy a second-order difference equation which can be expressed
in matrix form

(8) A(E,n, n+ 1) ·
(

un
un−1

)
=

(
un+1

un

)
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where

(9) A(E,n, n+ 1) =

(
E − V (n) −1

1 0

)
.

Thus writing A(E,m, n) = A(E,n−1, n) · · ·A(E,m,m+1), n > m, we see that the
the boundedness of eigenfunctions is equivalent to the boundedness of the sequences
A(E, 0, n) and A(E,−n, 0).

It turns out that if V ∈ `2(Z) then the essential support of the ac spectrum
is (−2, 2) (a result of Deift-Killip [DeK]). This is also the set of E such that

the unperturbed matrices

(
E −1
1 0

)
are elliptic. Thus the expected “Carleson’s

Theorem for Schrödinger operators” is just the Schrödinger Conjecture restricted
to potentials in `2(Z). A partial result in this direction, under a stronger decay
condition, is obtained in [CKR] (see also [MTT2] for a discussion of the limitations
of this approach in the consideration of general potentials in `2(Z)).

Why would one want to believe in the Schrödinger Conjecture for ergodic po-
tentials? In our view, it is due to the validity of an inequality, reminiscent of
that implied by Parseval’s Theorem in the case of decaying potentials. We state
it in terms of eigenfunctions: For almost every x ∈ X, and for almost every E in
the essential support Λ of the ac spectrum, there is a pair of linearly independent
complex conjugate eigenfunctions u(E, x, n) and u(E, x, n), normalized so that the

Wronskian u(E, x, n)u(E, x, n− 1)− u(E, x, n)u(E, x, n− 1) is i, such that

(10)
1

2π

∫
Λ

|u(E, x, n− 1)|2 + |u(E, x, n)|2dE ≤ 1,

with equality in the case of pure ac spectrum.3 Such an inequality is of course all
that is needed to deduce a bound on the average size of the transfer matrices:

(11)
1

4π

∫
Λ

‖A(E,m, n)‖+ ‖A(E,m, n)‖−1dE ≤ 1.

The ergodic setup has one advantage and one disadvantage with respect to the
decaying setup (as far as constructing counterexamples is concerned):

1. There is no need to “spare potential” in trying to promote eigenfunction
growth,

2. But potential we introduce must reappear (infinitely often), hence (by the
trend of products of large matrices to get larger) one risks promoting “too
much growth”, destroying the ac spectrum due to the need to obey (11). (In
other words, we have to “spare ac spectrum”.)

The effects of recurrence on transfer matrices growth is hard to neglect: in
particular, in the ergodic case, eigenfunctions are known [CJ] to be everywhere
bounded in any open interval in the essential support of the ac spectrum (in the
`2 case, the essential support is an interval, and one certainly can not hope for
boundedness everywhere).

In fact, it is quite difficult to achieve ac spectrum in the ergodic context, which
is of course what is behind the formulation of the Kotani-Last Conjecture. One of
the known obstructions is Kotani’s Determinism Theorem [K], which can be stated
as follows: If there is some ac spectrum, then the stochastic process {V (n)}n∈Z

3In general, 1
2π

∫
Λ |u(E, x, n − 1)|2 + |u(E, x, n)|2dE is half the sum of the weights of the ac

part of the spectral measures associated to δn and δn−1.
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is deterministic in the sense that perfect knowledge of the past implies perfect
knowledge of the future. The Kotani-Last Conjecture can then be seen as an
optimistic quantitative generalization of this result: almost periodicity means that
approximate knowledge of {V (n)}n∈Z (i.e., up to `∞-small error) can be obtained
by sufficiently precise knowledge of the sequence in a sufficiently long (but finite)
interval.

Remark 1.7. Regarding the essential support of the singular part of the spectral
measure, it is well known that bounded eigenfunctions can form at most a one-
dimensional subspace. The existence of bounded potentials having no non-trivial
bounded eigenfunctions was first established by Jitomirskaya in [Z] (for certain
explicit ergodic potentials with singular continuous spectrum).

1.2. Principles of construction. As discussed above, a key obstacle to the con-
struction of unbounded eigenfunctions in the absolutely continuous spectrum is the
need to obey (11). In fact there are other similar constraints that must be satisfied,

for instance, 1
N

∑N−1
k=0 ‖A(E, 0, k)‖ is bounded for almost every E.4

The need for unbounded eigenfunctions to oscillate shows that if we introduce
growth, we must cancel it at some later scale. This demands very careful matching
of the transfer matrices: if x, y ∈ SL(2,R) then we have ‖yx‖ ≥ ‖y‖‖x‖| sinω| where
ω is the angle between the contracting eigendirection of y∗y and the expanding
eigendirection of xx∗. So unless the eigendirections are closely aligned, if x and y are
large then yx is even larger. But as energy changes, the eigendirections move, which
can easily destroy a precise match, resulting in growth for nearby eigenfunctions,
which will result in losses of the ac spectrum. Notice that (11) shows also the
need to spread the moments where growth occurs according to the energy, but this
creates further complications regarding the interaction of the transfer matrices in
those different scales.

Our approach to avoid uncontrolled growth is based on slow deformation of
periodic potentials, the spectrum of which consists of bands. In order to create
growth in the first place, we must introduce disorder which eats up part of the ac
spectrum. In order to lose only an ε-proportion of ac spectrum, we must introduce
(in our approach) so little disorder that the corresponding growth is of order ε
in the bulk of the bands (this is clearly not enough to win, due to the need to
spare the ac spectrum). However, we can produce slightly more growth near the
edges. The disorder is introduced by slow deformation, and then we unwind it.
The importance of slowness in the deformation procedure is that any introduced
eigenfunction growth is also unwinded. We get back to a bounded setting which
allows us to iterate the estimates. What we see in the end is that an eigenfunction
will tend to pick up oscillation at some time scales. While those oscillations are
not absolutely summable, the process is so slow that their sum would still remain
bounded unless there is some coherence of the phases. However, at rare random
(and it is here one sees the spreading in the energy) time scales the oscillations do
become coherent, so the eigenfunction does become unbounded.

We must of course be very careful in our introducing of disorder at each step.
Our chosen mechanism is dictated by the setting. In the continuum, it is possible
to introduce tiny amounts of rotation (for the transfer matrices), and we proceed

4Indeed if u(E, x, n) and u(E, x, n) is a pair of complex conjugate eigenfunctions with Wron-

skian i then 1
πN

∑
0≤k≤N−1 |u(x,E, n)|2 is the derivative of the integrated density of states.
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by a large variation on the axis of rotation. This does not work in the discrete case,
so we must instead create a tiny disturbance on the axis of rotation. In order to
do so, we work all the time with one-parameter families of periodic potentials that
remain coherent in a large part of the spectrum.

In order to construct non almost periodic potentials which have ac spectrum,
we consider again perturbations of periodic potentials. We construct two distinct
deformations which are largely coherent, but which have slightly distinct periods
(in the continuum case). Iterating each independently for a long time, they will
slowly lose the coherence, until it has a definite magnitude. Later on they will be-
come coherent again, and we can match both to construct a new periodic potential
with large ac spectrum. Geometrically, the dynamics has slightly different speeds
at nearby orbits of the phase space, creating macroscopic sliding in long time scales
(think of the horocycle flow), though at some later time scale everything becomes
periodic. Sliding is naturally incompatible with almost periodicity. Technically, the
discrete case is much more delicate, since we can not produce a tiny difference of
periods (as it must be an integer), so we use slow deformation along a coherent fam-
ily of periodic potentials to construct coherent periodic potentials with discrepant
periods.

Acknowledgements: I would like to thank David Damanik for numerous com-
ments. This work was supported by the ERC Starting Grant “Quasiperiodic” and
by the Balzan project of Jacob Palis.

2. Continuum case: preliminaries

We will make use of the usual SL(2,R) action on C:

(
a b
c d

)
· z = az+b

cz+d .

Let d be the hyperbolic distance in the upper half-plane H.

Let Rθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
.

If A ∈ SL(2,R) satisfies |trA| < 2, there exists a unique fixed point u(A) of A in
H. Moreover, A is conjugated in SL(2,R) to a well defined rotation RΘ(A), where

Θ(A) ∈ (0, 1
2 )∪ ( 1

2 , 1). The conjugacy matrix B, satisfying BAB−1 = RΘ(A) is not
canonical (one may postcompose B with rotations), but can be chosen to have the
form

(12) B(A) =
1

(Im u(A))1/2

(
1 −<u(A)
0 Im u(A)

)
.

Notice that u and B are analytic functions of A.
Given a continuous function V : R→ R, we define the transfer matricesA[V ](E, t, s) ∈

SL(2,R) so that A[V ](E, t, t) = id and

(13)
d

ds
A[V ](E, t, s) =

(
0 −E − V (s)
1 0

)
A[V ](E, t, s).

An eigenfunction of the Schrödinger operator with potential V and energy E is a
solution u : R→ R2 of u(s) = A[V ](E, t, s) · u(t).

We have the following basic monotonicity property:

Lemma 2.1. If s > t and |trA[V ](E, t, s)| < 2 then

(14)
d

dE
Θ(A[V ](E, t, s)) > 0.
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2.1. Periodic case. Assume now that V is periodic of period T . In this case
we write A[V ](E, t) = A[V ](E, t, t + T ) and A[V ](E) = A[V ](E, 0). Note that
trA[V ](E, t) = trA[V ](E) for all t ∈ R.

The spectrum Σ = Σ(V ) of the Schrödinger operator with potential V is the
set of all E with |trA[V ](E)| ≤ 2. Let also Ω = Ω(V ) be the set of all E with
|trA[V ](E)| < 2. We note that Σ r Ω = ∂Ω consists of isolated points.

For E ∈ Ω, let u[V ](E, t) = u(A[V ](E, t)) and u[V ](E) = u[V ](E, 0). The
integrated density of states (i.d.s.) N is absolutely continuous in this case. It
satisfies

(15)
d

dE
N(E) =

1

2πT

∫ T

0

1

Im u[V ](E, t)
dt,

for each E ∈ Ω.
In the following results, we assume V to be fixed and write A(·) for A[V ](·) and

u(·) for u[V ](·).

Lemma 2.2. For almost every E ∈ Σ, for every ε > 0, there exists N ∈ N with
the following property. Let ũ(E, t) ∈ H be some (not necessarily periodic) solution
of A(E, t, s) · ũ(E, t) = ũ(E, s). Then

(16)
1

NT

∫ NT

0

1

Im ũ(E, t)
dt >

1

T

∫ T

0

1

Im u(E, t)
dt− ε.

Proof. Let E ∈ Ω. If d(ũ(E, t), u(E, t)) is large, then at least one of 1
Im ũ(E,t) and

1
Im ũ(E,t+T ) has to be large, so for N ≥ 2 we have

(17)
1

N

N−1∑
j=0

1

ũ(E, t+ jT )
≥ 1

Im u(E, t)
.

Assume further that Θ(A(E)) is irrational. Then for any 0 ≤ t ≤ T , as N
grows the sequence ũ(E, t + jT ), 0 ≤ j ≤ N − 1, is getting equidistributed in
the circle of (hyperbolic radius) d(ũ(E, t), u(E, t)) around u(E, t). One directly
computes that if z̃, z̃′ ∈ H are symmetric points with respect to some z ∈ H then
1
2 ( 1

Im z̃ + 1
Im z̃′ ) ≥

1
Im z . It follows that for N large

(18)
1

N

N−1∑
j=0

1

ũ(E, t+ jT )
≥ 1

Im u(E, t)
− ε.

Since this estimate is uniform on the solution ũ(E, t) provided d(ũ(E, t), u(E, t)) is
bounded, the result follows. �

Lemma 2.3. For almost every E ∈ Σ, for every t0 ∈ R we have

(19) inf
w∈R2, ‖w‖=1

sup
t>t0

‖A(E, t0, t) · w‖ = sup
t
e(d(u(E,t),i)−d(u(E,t0),i))/2.

Proof. Take E ∈ Ω such that Θ(A(E)) is irrational. �

2.2. Uniquely ergodic case. Let {Ft : X → X}t∈R, be a continuous flow which
is minimal and uniquely ergodic with invariant probability measure σ, and let
v : X → R be a continuous function. Let A[F, v](E, x, t, s) = A[V ](E, t, s) with
V (t) = v(Ft(x)) Let Σ = Σ(F, v) be the corresponding spectrum (which is x-
independent by minimality). Notice that if v is non-negative and non-identically
vanishing, then Σ ⊂ (0,∞).
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Let N(E) be the i.d.s., and L(E) be the Lyapunov exponent, defined by

(20) L(E) = lim
T→∞

1

T

∫
ln ‖A[F, v](E, x, 0, T )‖dσ(x).

For a uniquely ergodic flow, the i.d.s. is not necessarily absolutely continuous.
However, we have the following result (due to Kotani, see [D]). Let Σ0 ⊂ Σ be the
set of E with L(E) = 0.

Lemma 2.4. We have d
dEN(E) > 0 for almost every E ∈ Σ0. Moreover, there

exists a measurable function u[F, v] : Σ0 × X → H, unique up to Leb × σ-zero
measure sets, such that A[F, v](E, x, 0, t) · u[F, v](E, x) = u[F, v](E,Ft(x)). This
function satisfies

(21)
d

dE
N(E) =

1

2π

∫
1

Im u[F, v](E, x)
dσ(x).

Notice that when F is T -periodic, we have u[F, v](E, x) = u[V ](E) for V =
v(Ft(x)).

The following is due to Kotani, see [D].

Theorem 5. Let Ft : X → X be a uniquely ergodic flow, and let v : X → R
be continuous. If the Lyapunov exponent vanishes in the spectrum and the ids
is absolutely continuous, then the spectral measures are absolutely continuous for
almost every x ∈ X.

2.3. Solenoidal flows. If K and K ′ are compact Abelian groups, a projection
K → K ′ is a continuous surjective homomorphism.

Let K be a totally disconnected compact Abelian group, and let i : Z→ K be a
homomorphism with dense image. The solenoid associated to (K, i) is the compact
Abelian group obtained as the quotient of K ×R by the subgroup {(i(−j), j)}j∈Z.
It comes with a canonical projection π : S → R/Z, π(x, t) = t.

Given S as above, the solenoidal flow on S is FSt : S → S, FSt (x, s) = (x, t+ s).
A time-change of FS is a flow Ft : S → S of the form Ft(x, s) = (x, h(x, s, t))

with t 7→ h(x, s, t) C1 for each x and s, and such that wF (x, s) = d
dth(x, s, t)|t=0 is a

continuous positive function of (x, s). Notice that any continuous positive function
in S generates a time-change.

Notice that a time change of a solenoidal flow is uniquely ergodic, and its invari-
ant probability measure is absolutely continuous with respect to the Haar measure,
with continuous positive density proportional to 1

wF
.

If (K, i) and (K ′, i′) are as above, and there is a (necessarily unique) projection
pK,K′ : K → K ′ such that pK,K′ ◦ i = i′, then we can define a projection pS,S′ :
S → S′ in the natural way.

If F and F ′ are time-changes of FS and FS
′
, we say that F is ε-close to the lift

of F ′ if | lnwF ′ ◦ pS,S′ − lnw| ≤ ε. We say that v : S → R is ε-close to the lift of
v′ : S′ → R if |v′ ◦ pS,S′ − v| ≤ ε.

In all cases we will deal with (e.g., K = Z/nZ), there is a natural choice for the
embedding i : Z→ K. Thus we will often omit the embedding i from the notation
below.

2.4. Projective limits. An increasing sequence of compact Abelian groups is the
data given by a sequence Kj of compact Abelian groups, and of projections pj′,j :
Kj′ → Kj , j

′ > j such that pj2,j1 ◦ pj3,j2 = pj3,j1 .
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Given such an increasing family of compact Abelian groups, there exists a com-
pact Abelian group K and a sequence of projections pj : K → Kj such that
pj′,j ◦pj′ = pj for every j′ > j, and the pj separate points in K: one takes K as the
set of infinite sequences xj ∈ Kj with pj′,j(xj′) = xj , endowed with the product
topology and obvious group structure. We call K the projective limit of the Kj .

When considering pairs (Kj , ij) as before, we will assume moreover that the
projections are compatible with the embeddings, so that pj′,j = pKj′ ,Kj .

Notice that if the Kj are totally disconnected then the projective limit is totally
disconnected. Moreover, if Sj is the solenoid over Kj , then the projective limit S
of the Sj is the solenoid over K.

An immediate application of projective limits is the following:

Lemma 2.5. Let Sj be an increasing sequence of solenoids, and let S be the pro-
jective limit. Let F j be time-changes of the solenoidal flows FSj . Let vj : Sj → R
be continuous functions. Assume that for j′ > j, (F j

′
, vj′) is εj-close to the lift of

(F j , vj), where εj → 0. Then there exists a time-change F of the solenoidal flow
FS, and a continuous function v : S → R such that (F, v) is εj-close to the lift of
(F j , vj) for every j.

Proof. Define S as a projective limit of the Sj and take v = lim vj ◦ pj , wF =
limwFj ◦ pj . �

2.5. Lifting properties. The following is a standard “semi-continuity of the spec-
trum” property:

Lemma 2.6. Let F ′ be a time-change of a solenoidal flow FS
′
, and let v′ : S′ → R

be a continuous function. Then for every M > 0, ε > 0, there exists κ > 0 such
that if either (F, v) is κ-close to the lift of (F ′, v′), or (F ′, v′) is κ-close to the lift
of (F, v), then Σ(F, v) ∩ (−∞,M ] is contained in the ε-neighborhood of Σ(F ′, v′),
and Σ(F ′, v′) ∩ (−∞,M ] is contained in the ε-neighborhood of Σ(F, v).

It easily implies:

Lemma 2.7. Let F ′ be a time-change of a solenoidal flow FS
′
, and let v′ : S′ → R

be a continuous function. Then for every M > 0, ε > 0, there exists κ > 0 such
that if (F, v) is κ-close to the lift of (F ′, v′), then we have |Σ(F, v) ∩ (−∞,M ] r
Σ(F ′, v′)| < ε.

We say that (F, v) is (ε1, C1,M)-crooked if there is a set Γ ⊂ Σ∩ (−∞,M ] such
that |(Σ r Γ) ∩ (−∞,M ]| < ε1, and for every E ∈ Γ, the set of x ∈ X such that

(22) inf
w∈R2, ‖w‖=1

sup
t>0
‖A[F, v](E, x, 0, t) · w‖ > C1

has σ-measure (strictly) larger than 1− ε1.
This notion provides a quantification of how large the eigenfunctions are for

most of the parameters. Largeness can be checked in many cases by bounding the
u(E, x), see Lemma 2.3.

The following is obvious, but convenient:

Lemma 2.8. Let F ′ be a time-change of a solenoidal flow FS
′
, and let v′ : S′ →

R be a continuous function. Assume that (F ′, v′) is (ε1, C1,M)-crooked. Then
there exists κ > 0 such that if (F, v) is κ-close to the lift of (F ′, v′) then (F, v) is
(ε1, C1,M)-crooked.
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Proof. Just use that v ◦Ft is close to v′ ◦F ′t ◦ pS,S′ for t (arbitrarily) bounded. �

We say that (F, v) is (ε,M)-good if

(23) sup
Σ∩(−∞,M ]

L(E) < ε.

It also trivially behaves well under lifts:

Lemma 2.9. Let F ′ be a time-change of a solenoidal flow FS
′
, and let v′ : S′ → R

be a continuous function. Assume that (F ′, v′) is (ε,M)-good. Then there exists
κ > 0 such that if (F, v) is κ-close to the lift of (F ′, v′), then (F, v) is (ε,M)-good.

We say that (F, v) is (ε,M)-nice if

(24) N(M)−
∫ M

−∞

dN

dE
dE < ε.

Niceness provides a measure of how absolutely continuous the i.d.s. is.
The following deserves an argument.

Lemma 2.10. Let F ′ be a time-change of a periodic solenoidal flow FS
′
,5 and let

v′ : S′ → R be a continuous function. Assume that (F ′, v′) is (ε,M)-nice. Then
there exists κ > 0 with the following property. Assume that (F, v) is κ-close to
the lift of (F ′, v′), the Lyapunov exponent for (F, v) vanishes in the spectrum, and
|(Σ(F ′, v′) r Σ(F, v)) ∩ (−∞,M ]| < κ. Then (F, v) is (ε,M)-nice.

Proof. Let N , N ′ be the integrated density of states for (F, v), (F ′, v′). It is clear
that N(M) is close to N ′(M). Using Lemma 2.2 and Lemma 2.4, we see that for
almost every E′ ∈ Σ(F ′, v′), for every ε′ > 0, there exists δ > 0 such that for almost
every E ∈ Σ which is δ-close to E′, if κ > 0 is sufficiently small, we have

(25)
d

dE
N(E) >

d

dE
N ′(E′)− ε′.

Integrating over Σ(F, v) ∩ (−∞,M ], and using that the Lebesgue measure of the

spectrum is close, we get
∫M
−∞

d
dENdE close to

∫M
−∞

d
dE′N

′dE′. The result follows.
�

2.6. Slow deformation. The following is the basic estimate of [FK].

Lemma 2.11. Let J ⊂ R be a closed interval, and let A : J × R/Z→ SL(2,R) be
a smooth function such that |trA(E, t)| < 2 for (E, t) ∈ J × R/Z. Let B(E, t) =
B(A(E, t)), θ(E, t) = Θ(A(E, t)). Then for every m, k ∈ N, there exists n(m) ∈ N
and Ck,m > 0 such that for every n ≥ n(m), there exist smooth functions B(m,n) :
J × R/Z→ SL(2,R), θ(m,n) : J × R/Z→ R such that

1. ‖A(m,n) −Rθ(m,n)
‖Ck ≤

Ck,m
nm , where

(26) A(m,n)(E, t) = B(m,n)(E, t+
1

n
)A(E, t)B(m,n)(E, t)

−1,

2. ‖B(m,n) −B‖Ck ≤
Ck,m
n ,

3. ‖θ(m,n) − θ‖Ck ≤
Ck,m
n .

5This result still holds without assuming periodicity.
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Proof. Consider first the case m = 1. In this case, set B(1,n) = B, θ(1,n) = θ, and
the estimate is obvious.

Assume we have proved the result for m ≥ 1. Let

(27) B(m+1,n)(E, t) = B(A(m,n)(E, t))B(m,n)(E, t),

(28) θ(m+1,n)(E, t) = Θ(A(m,n)(E, t)).

The estimates follow from the induction hypothesis. �

Under a monotonicity assumption, it yields a parameter estimate:

Lemma 2.12. Under the hypothesis of the previous lemma, assume moreover that
θ̃(E) =

∫
R/Z θ(E, t)dt satisfies d

dE θ̃(E) 6= 0 for every E ∈ J . For n ∈ N, let

A(n) : J × R/Z→ SL(2,R) be given by

(29) A(n)(E, t) = A(E, t+
n− 1

n
)A(E, t+

n− 2

n
) · · ·A(E, t+

1

n
)A(E, t).

Then there exist functions θ̃(n) : J → R/Z such that for every measurable subset
Z ⊂ R/Z,

(30) lim
n→∞

|{E ∈ J, θ̃(n)(E) ∈ Z}| = |Z||J |,

with the following property. For every δ > 0,

(31) lim
n→∞

‖trA(n)(E, t)− 2 cos 2πθ̃(n)(E)‖C0(J×R/Z,R) = 0,

(32) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖Θ(A(n)(E, ·))− θ̃(n)(E)‖C1(R/Z,R) = 0,

(33) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖u(A(n)(E, ·))− u(A(E, ·))‖C1(R/Z,C) = 0.

Proof. Let B(m,n), A(m,n) and θ(m,n) be as in Lemma 2.11, and let

(34) A(m,n)(E, t) = B(m,n)(E, t)A
(n)(E, t)B(m,n)(E, t)

−1.

We have

(35) A(m,n)(E, t) = A(m,n)(E, t+
n− 1

n
) · · ·A(m,n)(E, t).

Let θ(m,n)(E, t) =
∑n−1
j=0 θ(m,n)(E, t+ j

n ). Then

(36) A(m,n) −Rθ(m,n) =

n∑
j=1

H(m,n,j),

with

(37) H(m,n,j) =
∑

H(m,n,i)

where the sum runs over all non-empty sequences i = (i1, ..., ij) satisfying 0 ≤ i1 <
... < ij < n, and H(m,n,i) is a product Tn−1 · · ·T0 with Tl(E, t) = Rθ(m,n)(E,t+

l
n ) if

l 6= ir for every 1 ≤ r ≤ j, and Tl(E, t) = A(m,n)(E, t+ l
n )−Rθ(m,n)(E,t+

l
n ) if l = ir

for some 1 ≤ r ≤ j. Then

(38) ‖H(m,n,i)‖C0 ≤ ‖A(m,n) −Rθ(m,n)
‖jC0 ,
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‖DH(m,n,i)(E, t)‖C0 ≤j‖D(A(m,n) −Rθ(m,n)
)‖C0‖A(m,n) −Rθ(m,n)

‖j−1
C0(39)

+ (n− j)‖DRθ(m,n)
‖C0‖A(m,n) −Rθ(m,n)

‖jC0 ,

where we write D for the total derivative. Thus

(40) ‖H(m,n,i)‖C1 ≤ Cjm
nmj−1

,

(41) ‖A(m,n) −Rθ(m,n)‖C1 ≤
n∑
j=1

Cjm
n(m−1)j−1

,

so that for m ≥ 3 we have

(42) lim
n→∞

‖A(m,n) −Rθ(m,n)‖C1 = 0.

Note that

(43) θ(m,n)(E, t) = n
∑
k∈nZ

e2πikt

∫
R/Z

θ(m,n)(E, t)e
−2πiktdt.

Let θ̃(m,n)(E) =
∫
R/Z θ(m,n)(E, t)dt. Then for m ≥ 3, using that θ(m,n) is uniformly

C3 for fixed m and n→∞,

(44) lim
n→∞

sup
E∈J
‖θ(m,n)(E, ·)− nθ̃(m,n)(E)‖C1(R/Z,R) = 0.

Since

(45) lim
n→∞

‖θ̃(m,n)(E)− θ̃(E)‖C1 = 0,

and the derivative of θ̃(E) is non-vanishing, it follows that for m ≥ 3 and each
measurable set Z ⊂ R/Z,

(46) lim
n→∞

|{E ∈ J, θ̃(m,n)(E) ∈ Z}| = |Z||J |.

Fix m ≥ 3 and let θ̃(n) = θ̃(m,n). Then for n large we get

(47) lim
n→∞

‖trA(m,n)(E, t)− 2 cos 2πθ̃(n)(E)‖C0(J×R/Z,R) = 0,

(48) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖u(A(m,n)(E, ·))− i‖C1(R/Z,C) = 0,

(49) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖Θ(A(m,n)(E, ·))− θ̃(n)‖C1(R/Z,SL(2,R)) = 0.

Notice that trA(m,n) = trA(n) and Θ(A(m,n)) = Θ(A(n)). Moreover, u(A(n)(E, t)) =
B(m,n)(E, t)

−1u(A(m,n)(E, t)). Since

(50) lim
n→∞

‖B(m,n) −B‖C1 = 0,

and B(E, t) · u(A(E, t)) = i, we conclude that

(51) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖u(A(n)(E, ·))− u(A(E, ·))‖C1(R/Z,C) = 0.

�
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3. Continuum case: unbounded eigenfunctions

The potential we will produce will be a suitable projective limit of periodic
potentials. The actual work we need to do is to inductively construct suitable
periodic potentials.

3.1. Construction of periodic potentials. Let V : R/TZ→ R be a continuous
function with V (0) = 0. For δ > 0, N ∈ N, n ∈ N, the (δ,N, n)-padding of V is the

continuous function V ′ : R/T ′Z → R, T ′ = 2NnT + δ
∑2n−1
j=0 sin2N π j

2n , given by
the following conditions:

1. V ′(t) = V (t− aj), aj ≤ t ≤ aj +NT , 0 ≤ j ≤ 2n− 1,
2. V ′(t) = 0, aj +NT ≤ t ≤ aj+1, 0 ≤ j ≤ 2n− 1,

3. a0 = 0, aj+1 = aj +NT + δ sin2N π j
2n .

In other words, we repeat the periodic potential Nn times, but with an extra
“padding” with a small interval of zeroes every N repetitions. The length of those
intervals is slowly modulated, but it is always small (at most δ).

The goal of this section is to establish the following estimate:

Lemma 3.1. Let V (0) : R/T (0)Z → R be a smooth non-constant, non-negative
function with V (0) = 0 near 0. Then for every M, ξ > 0, there exists C > 0 such
that for every C0 > 0, for every δ > 0 sufficiently small, there exist 0 < P < ξδ−1,
and sequences N (j), n(j), 1 ≤ j ≤ P , such that if we define V (j) : R/T (j)Z → R,
1 ≤ j ≤ P so that V (j) is obtained by (δ,N (j), n(j))-padding of V (j−1), then there
exists a compact subset Γ ⊂ (0,M ]∩Ω(V (P )) such that |Σ(V (0))∩(−∞,M ]rΓ| < ξ
and for every E ∈ Γ we have

(52) sup
t
d(u[V (P )](E, t), i) ≥ C0,

(53)
1

T (P )

∫ T (P )

0

d(u[V (P )](E, t), i)dt ≤ C.

We will need a few preliminary results.

Lemma 3.2. For every C > 0, M > 0, there exist C ′ > 0 and δ0 > 0 with the
following property. Let V : R/TZ → R be a smooth function with V (t) = 0 near
0,6 and let A(·) = A[V ](·) and u(·) = u[V ](·). Let E0 ∈ Ω(V )∩ [M−1,M ]. Assume

that C−1 < d(u(E0), E
1/2
0 i) < C. Then there exists ε0 > 0 such that for every

0 < ε < ε0, for every κ > 0, for every 0 < δ < δ0, for every N sufficiently large, for
every n sufficiently large, letting V ′ be the (δ,N, n)-padding of v, A′(·) = A[V ′](·),
u′(·) = u[V ′](·), we have the following. There exists a compact set Λ ⊂ Ω(V ′) ∩
[E0 − ε, E0 + ε] such that

1. |Λ| > 2(1− C ′δ)ε,
2. For E ∈ Λ, d(u′(E), u(E)) < κ and C−1 < d(u′(E), E1/2i) < C,
3. For E ∈ Λ,

(54) sup
t∈[0,T ′]

d(u′(E, t), i) ≥ sup
t∈[0,T ]

d(u(E, t), i),

6This neighborhood can be arbitrarily small, but this will influence the constants below that
depend on v.
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4. For any C ′δ < γ < 1/4, there exists a compact set Λ′ ⊂ Λ with |Λ′| > γε
such that for E ∈ Λ′,

(55) sup
t∈[0,T ′]

d(u′(E, t), i) ≥ sup
t∈[0,T ]

d(u(E, t), i) + C ′−1 δ

γ
.

5. For E ∈ Λ,

(56)

∣∣∣∣∣ 1

T ′

∫ T ′

0

d(u′(E, t), i)dt− 1

T

∫ T

0

d(u(E, t), i)dt

∣∣∣∣∣ < κ,

Proof. Let D(E) =

(
E1/4 0

0 E−1/4

)
. Let G : R+ × R/Z → SL(2,R) be given by

G(E, t) = D(E)R
δE

1/2

2π sin2N πt
D(E)−1A(E)N . We have

(57) A′(E) = G(E,
2n− 1

2n
)G(E,

2n− 2

2n
) · · ·G(E,

1

2n
)G(E, 0).

We can write for E near E0,

(58) B(E)A(E)B(E)−1 = Rθ(E),

where B(E) = B(A(E)) and θ(E) = Θ(A(E)). By Lemma 2.1, θ has non-zero
derivative.

Thus we can write

(59) G(E, t) = D(E)R
δE

1/2

2π sin2N πt
D(E)−1B(E)−1RNθ(E)B(E).

Letting Q(E) = B(E)D(E), we get

(60) trG(E, t) = trQ(E)R
δE

1/2

2π sin2N πt
Q(E)−1RNθ(E)

Notice that Q(E) /∈ SO(2,R), since Q(E) · i 6= i (here we use that B(E)−1 · i =
u(E) 6= E1/2i = D(E) · i for E near E0). Thus we can write Q = R(1)D(0)R(2), a
product of rotation, diagonal and rotation matrices, depending analytically on E.
Then

(61) trG(E, t) = trD(0)(E)R
δE

1/2

2π sin2N πt
D(0)(E)−1RNθ(E).

Write D(0)(E) =

(
λ(E) 0

0 λ(E)−1

)
. We may assume that λ(E) > 1. Then

(62) λ(E) = ed(u(E),E1/2i)/2,

so that 1
2C < lnλ(E) < C

2 . Then

trG(E, t) =2 cos((δE1/2 sin2N πt) + 2πNθ(E))(63)

− (λ(E)− λ(E)−1)2 sin(δE1/2 sin2N πt) sin 2πNθ(E).

Thus

(64) |trG(E, t)− 2 cos((δE1/2 sin2N πt) + 2πNθ(E))| ≤ C1δ sin 2πNθ(E).

We conclude that if 2Nθ(E) is at distance at least C2δ from Z, then |trG(E, t)| < 2.
We conclude that for ε sufficiently small, for N sufficiently large, the set of

E ∈ [E0 − ε, E0 + ε] such that |trG(E, t)| ≥ 2 for some t has Lebesgue measure at
most C3δε. By Lemma 2.12, for n large we will have |trA′(E)| < 2 for a compact
set Λ(ε, δ,N, n) ⊂ [E0 − ε, E0 + ε] of Lebesgue measure at least 2(1 − C4δ)ε. We
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may further assume that for E ∈ Λ(ε, δ,N, n), the sequence {jθ(E)}0≤j≤N−1 is 1
100

dense mod 1. Thus for such E, and any w ∈ H, and any 0 ≤ t ≤ T , there exists
0 ≤ k ≤ N − 1 such that d(A(E, 0, t)A(E)k · w, i) ≥ d(u(E, t), i) + 1

2d(w, u(E)).
Taking w = u′(E, am) for some 0 ≤ m ≤ 2n− 1 (where aj is as in the definition of
a (δ,N, n)-padding), we get

(65) d(u′(E, t+ kT + am, i) ≥ d(u(E, t), i) +
1

2
d(u′(E, am), u(E)).

In particular,

(66) sup
t
d(u′(E, t), i) ≥ sup

t
d(u(E, t), i) +

1

2
max

0≤m≤2n−1
d(u′(E, am), u(E)).

Lemma 2.12 shows that u′(E, am) is near u(G(E, m2n )) for n large. In partic-
ular, u′(E) is near u(E), since G(E, 0) = A(E) and u′(E, an) is near w(E) =
u(G(E, 1/2)).

We want to estimate the hyperbolic distance between w(E) and u(E) in H. Let
w′(E) be the fixed point of D(0)(E)R

δE
1/2

2π

D(0)(E)−1RNθ(E) in H. Then w(E) =

B−1R(1) · w′(E). Since u(E) = B−1R(1) · i, it follows that

(67) d(w(E), u(E)) = d(w′(E), i).

But w′(E) is the solution z ∈ H of the equation az2 + bz + c = 0, where

(68) a = cos δE1/2 sin 2πNθ(E) + λ(E)−2 sin δE1/2 cos 2πNθ(E),

(69) b = (λ(E)2 − λ(E)−2) sin δE1/2 sin 2πNθ(E),

(70) c = cos δE1/2 sin 2πNθ(E) + λ(E)2 sin δE1/2 cos 2πNθ(E).

Then

Im w′(E) =

(
1 +

(λ(E)2 − λ(E)−2) sin δE1/2 cos 2πNθ(E)

cos δE1/2 sin 2πNθ(E) + λ(E)−2 sin δE1/2 cos 2πNθ(E)

(71)

− (λ(E)2 − λ(E)−2)2 sin2 δE1/2 sin2 2πNθ(E)

4(cos δE1/2 sin 2πNθ(E) + λ(E)−2 sin δE1/2 cos 2πNθ(E))2

)1/2

Under the condition that 2Nθ(E) is at distance at least C2δ from Z, we have

(72)

∣∣∣∣ (λ(E)2 − λ(E)−2)2 sin2 δE1/2 sin2 2πNθ(E)

4(cos δE1/2 sin 2πNθ(E) + λ(E)−2 sin δE1/2 cos 2πNθ(E))2

∣∣∣∣ ≤ C5δ
2,

(73)

| (λ(E)2 − λ(E)−2) sin δE1/2 cos 2πNθ(E)

cos δE1/2 sin 2πNθ(E) + λ(E)−2 sin δE1/2 cos 2πNθ(E)
| ≥ C−1

6 δ cot 2πNθ(E).

If 2Nθ(E) is at distance C2δ < γ < 1/4 from Z then

(74) | (λ(E)2 − λ(E)−2) sin δE1/2 cos 2πNθ(E)

cos δE1/2 sin 2πNθ(E) + λ(E)−2 sin δE1/2 cos 2πNθ(E)
| ≥ C−1

7

δ

γ
,

so that

(75) d(w′(E), i) ≥ C−1
8

δ

γ
.
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It follows that in this case

(76) sup
t
u′(E, t) ≥ sup

t
u(E, t) + C−1

9

δ

γ
.

For C2δ < γ < 1/4, let Λ′(ε, δ,N, n, γ) be the set of E ∈ Λ(ε, δ,N, n) such that
2Nθ(E) is at distance at most γ from Z. Since θ has non-zero derivative, we have
|Λ′(ε, δ,N, n, γ)| ≥ 3

2γε, for ε small, N sufficiently large and n sufficiently large.
To conclude, let us show that if E ∈ Λ(ε, δ,N, n) and 2Nθ(E) is C2δ-away from

Z, then

(77)
1

T ′

∫ T ′

0

d(u′(E, t), i)dt− 1

T

∫ T

0

d(u(E, t), i)dt

is small. The formulas for w′ imply that u′(E, t) is at bounded hyperbolic distance
from some u(E, t′). In fact, if aj ≤ t ≤ aj+1 then u′(E, t) is at bounded hyper-
bolic distance from u(E, t − aj). Moreover, if aj ≤ t ≤ aj + T , then A(E, 0, t −
aj)
−1u′(E, t) is near u(G(E, j

2n )). If j
2n is not close to 1

2 , the estimates give that

the fixed point of G(E, j
2n ) is close to u(E), provided N is large. It follows that

u′(E, t) is near u(E, t− aj). The result follows. �

Lemma 3.3. For every C > 0, M > 0, there exist C ′ > 0 and δ0 > 0 with
the following property. Let V : R/TZ → R be a smooth non-negative function
with V (t) = 0 near 0. Let Ξ ⊂ Ω(V ) ∩ [M−1,M ] be a compact subset such that
C−1 < d(u[V ](E), E1/2i) < C for every E ∈ Λ. Then for every κ > 0, R ∈ N,
for every 0 < δ < δ0, for every N sufficiently large, for every n sufficiently large,
if V ′ : R/T ′Z→ R is the (δ,N, n)-padding of v, then there exists a compact subset
Ξ′ ⊂ Ξ ∩ Ω(V ′) such that

1. For j ≥ 0, the conditional probability that E ∈ Ξ belongs to Ξ′, given that
j
R ≤ supt d(u[V ](E, t), i) < j+1

R is at least 1− 2C ′,

2. For every E ∈ Ξ′, d(u[V ′](E), u[V ](E)) < κ and C−1 < d(u[V ′](E), E1/2i) <
C,

3. For every E ∈ Ξ′,

(78) sup
t
d(u[V ′](E, t), i) ≥ sup

t
d(u[V ′](E, t), i),

4. For j ≥ 0, and for every C ′δ < γ < 1/4, the conditional probability that
E ∈ Ξ belongs to Ξ′ and

(79) sup
t
d(u[V ′](E, t), i) > sup

t
d(u[V ](E, t), i) + C ′−1 δ

γ
,

given that j
R ≤ supt d(u[V ](E, t), i) < j+1

R is at least γ
3 .

5. For every E ∈ Ξ′,

(80)

∣∣∣∣∣ 1

T ′

∫ T ′

0

d(u[V ′](E, t), i)dt− 1

T

∫ T

0

d(u[V ](E, t), i)dt

∣∣∣∣∣ < κ.

Proof. Follows from the previous lemma by a covering argument. (Notice that
the statements about conditional probabilities are automatic for large j, since
supt d(u[V ](E, t), E1/2i) is bounded by compactness of Ξ.) �

Proof of Lemma 3.1. Notice that by non-constancy of V (0), u(0)(E) 6= E1/2i for
almost every E ∈ Σ(V (0)). Up to increasing M , we can assume that inf Σ(V (0)) >
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M−1. Then for sufficiently large C > 0, there exists a compact subset Ξ(0) ⊂
Σ(V (0)) ∩ (−∞,M ] ∩Ω(V (0)) such that |(Σ(V (0)) r Ξ(0)) ∩ (−∞,M ]| < ξ

2 , and for

every E ∈ Ξ(0) we have

(81) C−1 < d(u[V (0)](E), E1/2i) < C,

and

(82) sup
t
d(u[V (0)](E, t), i) <

C

2
.

Let δ0 = δ0(C,M) and C ′ = C ′(C,M) be as in Lemma 3.3.

Let P be maximal so that (1− 2C ′δ)P > 1− ξ
2M . Choose very small 0 < δ < δ0,

choose R ∈ N very large (in particular, much larger than δ−1), and take κ > 0 very
small. Define sequences V (j), Ξ(j), 1 ≤ j ≤ P , so that V (j), Ξ(j) is obtained by
applying Lemma 3.3 to V (j−1), Ξ(j−1). It follows that

(83) |Σ(V (0)) ∩ (−∞,M ] r Ξ(P )| ≤ ξ

2
+M(1− (1− 2C ′δ)P ) < ξ.

It also follows that

(84)
1

T (P )

∫ T (P )

0

d(u[V (P )](E, t), i)dt ≤ C

2
+ κP < C.

Let Zj , 0 ≤ j ≤ P , be random variables on Ξ(0) given as follows. If E /∈
Ξ(j), let Zj = Zj−1 + 1. Otherwise, let Zj = j

R , where j is maximal with

supt d(u[V (j)](E, t), i) ≥ j
R .

Let L ⊂ N be the set of all l with 4δC ′−1R < l < C ′−2R. We have Z0 ≥ 0, and
the conditional probability that Zj − Zj−1 ≥ l

R = C ′−1 δ
γ , given Zj−1 is at least

γ
3 = δR

3lC′ , provided C ′δ < γ < 1/4, i.e. l ∈ L. Consider i.i.d. random variables Wj ,

1 ≤ j ≤ P , taking only values of the form l
R with l = 0 or l ∈ L, and such that

(85) p(Wj ≥
l

R
) =

δR

3lC ′
.

whenever l ∈ L. Since Z0 ≥ 0 and p(Zj − Zj−1 ≥ l
R |Zj−1) ≥ p(Wj ≥ l

R ) for every
l ∈ Z, we get

(86) p(Z(P ) ≥ m

R
) ≥ p(

P∑
j=1

Wj ≥
m

R
)

for every m ∈ Z.

To conclude, it is enough to show that p(
∑P
j=1Wj < C0) < ξ/2, provided δ is

sufficiently small.
By (85), for C ′′ < k < −C ′′ − ln δ, we have p(2kδ < Wj < 2k+1δ) > C ′′−12−k

(here C ′′ is an appropriately large constant depending on C ′, and we are using that
R is much larger than δ−1). We also have P ≥ C ′′′−1δ−1 for some constant C ′′′

depending on M , ξ and C ′. By the Law of Large Numbers, for each D ∈ N, and
each C ′′ < k ≤ D, if δ is sufficiently small, then with probability at least 1 − ξ

4D ,

we will have 2kδ < Wj < 2k+1δ for a set of 1 ≤ j ≤ P of cardinality at least
C ′′−12−k−1P ≥ C ′′′−1C ′′−12−k−1δ−1. This implies that, with probability at least

1− ξ
4 ,
∑
Wj ≥ D−[C′′]

2C′′′C′′ . The result follows by taking D ≥ C ′′ + 2C ′′′C ′′C0. �
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3.2. Passing to the limit.

Lemma 3.4. Let Ft : S → S be a T -periodic time-change of a solenoidal flow, and
let V : R/TZ → R, v : S → R be continuous functions such that V (t) = v(Ft(0))
is smooth. Assume that V (t) = 0 for T − ε0 ≤ t ≤ T for some 0 < ε0 < T . Then
for 0 < δ < ε0, and for every N,n ∈ N, the (δ,N, n)-padding V ′ of V has the form
V ′(t) = v′(F ′t (0)), where F ′t : S′ → S′ is a T ′-periodic time-change of a solenoidal
flow, v′ : S′ → R is continuous, and (F ′, v′) is δ

ε0
-close to a lift of (Ft, v).

Proof. Let U0 = {Ft(0), T − ε0 < t < T}. We take S′ as the Nn-cyclic cover of
S. Let p : S′ → S be the corresponding projection. Let U ′0,j , 0 ≤ j ≤ 2nN − 1,

be the connected components of U ′0 = p−1(U0), labeled so that they are positively
cyclically ordered and such that the right boundary of U ′0,2nN−1 is 0. Then there

exists a continuous non-positive function ρ : S′ → R such that ρ = 0 outside U ′0
and any U ′0,j with j not divisible by N , and such that

(87)

∫
U ′0,j

1

eρ(x)wF (p(x))
dx = ε0 + δ sin2N π

j

N

is equal to if j is divisible by N . Indeed, we can take ‖ρ‖C0 arbitrarily close to
ln ε0+δ

ε0
, and hence less than δ

ε0
.

The result then follows with v′ = v ◦ p, and wF ′ = eρwF ◦ p. �

Lemma 3.5. Let Ft : S → S be a periodic time-change of a solenoidal flow, and let
v : S → R be continuous non-constant non-negative function such that t 7→ v(Ft(0))
is smooth and v(Ft(0)) = 0 for t near 0. Then for every ε1, C1,M, κ > 0, there exists
a periodic time-change of a solenoidal flow F ′t : S′ → S′, and a continuous non-
constant non-negative function such that t 7→ v′(F ′t (0)) is smooth, v′(F ′t (0)) = 0 for
t near 0, (F ′, v′) is κ-close to a lift of (F, v), and (F ′, v′) is (ε1, C1,M)-crooked.

Proof. Let ε0 > 0 be such that v(Ft(0)) = 0 for T − ε0 ≤ t ≤ T . Apply Lemma 3.1
to V (0)(t) = v(Ft(0)), with parameters C0 and ξ < ε0κ to be specified below, to
get Γ and P , and then Lemma 3.4 P times, to get (F ′, v′) with V (P )(t) = v′(F ′t (0))

such that (F ′, v′) is ξ
ε0

-close to a lift of (F, v). By Lemma 2.7, if ξ is small then

|Σ(V (P ))∩(−∞,M ]rΣ(V (0))| < ε1/2, and if additionally 0 < ξ < ε1/2 we conclude
that |Σ(V (P )) ∩ (−∞,M ] r Γ| < ε1. Fix such ξ and let C be as in Lemma 3.1.

By (53), for every E ∈ Γ, the set ZE of all t ∈ R/T (P )Z with

(88) d(u[V (P )](E, t), i) ≤ C

ε1

has measure at least (1− ε1)T (P ). By Lemma 2.3, for almost every E ∈ Γ, t0 ∈ ZE
implies that

(89) inf
w∈R2, ‖w‖=1

sup
t>t0

‖A[V (P )](E, t0, t)‖ ≥
(
C0ε1
C

)1/2

,

So by taking C0 = C2
1C/ε1, we get that (F ′, v′) is (ε1, C1,M)-crooked. �

Proof of Theorem 3. Let V (0) : R/Z → R be a smooth non-constant non-negative
periodic function with V (0)(t) = 0 near 0. We can see R/Z as the solenoid S(0)

corresponding to the trivial group. Let F (0) be the solenoidal flow on S(0).
Let κ0 = 1. Apply Lemma 3.5 inductively to obtain a sequence (F (j), v(j)), j ≥ 1

such that
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1. (F (j), v(j)) is (2−j , 2j , 2j)-crooked,
2. |(Σ(F (j), v(j)) r Σ(F (j−1), v(j−1)) ∩ (−∞, 2j ]| < κj ,

3. (F (j), v(j)) is κj-close to the lift of (F (j−1), v(j−1)),
4. κj < κj−1/2 is chosen so small that if (F, v) is 2κj-close to the lift of

(F (j−1), v(j−1)), and |(Σ(F, v) r Σ(F (j−1), v(j−1)) ∩ (−∞, 2j ]| < 2κj , then
(F, v) is (2−j , 2j)-nice (use Lemma 2.10), (2−j , 2j)-good (use Lemma 2.9),
and if j ≥ 2, (21−j , 2j−1, 2j−1)-crooked (use Lemma 2.8).

Let (F, v) be the limit of the (F (j), v(j)) obtained by Lemma 2.5. Then (F, v)
is (2−j , 2j)-good for all j, so the Lyapunov exponent vanishes in the spectrum.
Moreover, (F, v) is (2−j , 2j)-nice for all j, so the i.d.s. is absolutely continuous.7

By Theorem 5, for almost every x ∈ S the spectral measure is purely absolutely
continuous. By construction, (F, v) is (2−j , 2j , 2j)-crooked for all j. Thus for almost
every E in the spectrum, for almost every x ∈ S, all non-trivial eigenfunctions are
unbounded. �

4. Continuum case: breaking almost periodicity

The example discussed in the previous section can be verified to be not almost
periodic. Here we will discuss a simpler example that will be easier to analyze.

4.1. Spectral measure. Given a bounded continuous function V : R → R, we
denote by µV the spectral measure for the line Schrödinger operator. It has some
basic continuity property:

Lemma 4.1. Let V : R → R be a bounded continuous function, and let V (n) :
R → R, n ∈ N be a sequence of uniformly bounded continuous functions such that
V (n) → V uniformly on compact subsets of R. Then

∫
φdµV (n) →

∫
φdµV for every

compactly supported continuous function φ : R→ R.

We will only need explicit formulas for the spectral measure in the case of periodic
potentials. Let V : R/TZ → R be continuous, and denote its shifts by Vs : t 7→
V (s+ t). Then µVs is absolutely continuous and

(90)
d

dE
µVs =

1

Im u[V ](E, s)
.

For C > 0, let µVs,C be the restriction of µVs to the set of E with | ddEµVs | < C.
We say that a periodic v is (ε, C,M)-uniform if µVs(−∞,M ]− µVs,C(−∞,M ] < ε
for every s.

We clarly have:

Lemma 4.2. For every periodic V , ε > 0, M > 0, there exists C > 0 such that V
is (ε, C,M)-uniform.

4.2. Weak mixing. Let F ′t : S′ → S′ be a time-change of a periodic solenoidal
flow. We say that a time-change Ft : S → S of a solenoidal flow is (N,F ′)-mixed
if S projects onto S′ (through p), and for every 1 ≤ j ≤ N , there exists tj > 0 and
compact subsets Uj , Vj ⊂ S with Haar measure strictly larger than 1/3, such that
for each x ∈ Uj there exists |t| < 1

N such that p(Ftj (x)) = F ′t (p(x)), and for each

x ∈ Vj , there exists |t− j
N | <

1
N such that p(Ftj (x)) = F ′t (p(x)).

7Notice that since Σ(F, v) contains
⋂
j′≥j Σ(F (j′), v(j′)) (see Lemma 2.6), we must have

|(Σ(F, v) r Σ(F (j−1), v(j−1)) r (−∞, 2j ]| < 2κj .
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Lemma 4.3. Let F be (N,F ′)-mixed. Then there exists κ > 0 such that if F̃ is

κ-close to the lift of F then F̃ if (N,F ′) mixed.

Lemma 4.4. Let F be the projective limit of F (n), and assume that for every
N ∈ N, for every n sufficiently large, F is (N,F (n))-mixed. Then F is weak mixing.

Proof. If F is not weak mixing, then there exists a non-trivial eigenfunction, i.e., a
measurable function ψ : S → S1 such that ψ ◦ Ft = e2πiθtψ for some θ ∈ R r {0}.
Let ψ(n) : S(n) → C be the expected value of ψ on p−1

S,S(n)(x) (with respect to

the Haar measure on S). Then ψ(n) ◦ pS,S(n) converges to ψ almost everywhere
(Martingale Convergence Theorem).

Since ψ is an eigenfunction, t 7→ ψ(n)(F
(n)
t (0)) is continuous, uniformly on t and

n.
By the definition of projective limit,

(91) lim
n→∞

sup
x∈S(n)

sup
0≤t≤1

|ψ(n)(F
(n)
t (x)− e2πiθtψ(n)(x)| = 0.

Thus, for x ∈ Uj , ψ(n)(pS,S(n)(Ftj (x))) is close to ψ(n)(pS,S(n)(x)). Since the first
is close to ψ(Ftj (x)) and the second is close to ψ(x) for most x ∈ Uj , this shows
that θtj is close to an integer.

A similar argument using Vj , shows that θ(tj − j
N ) is close to an integer, so that

θ jN is close to an integer. Since 1 ≤ j ≤ N is arbitrary, we conclude that θ = 0. �

4.3. The construction. Let V : R/TZ→ R be a continuous function with V (0) =
0. For δ > 0, n ∈ N, the (δ, n)-padding (a simplified version of a (δ,N, n)-padding)
of V is the continuous function V ′ : R/T ′Z → R, T ′ = 2nT + δn, given by the
following conditions:

1. V ′(t) = V (t− aj), aj ≤ t ≤ aj + T , 0 ≤ j ≤ 2n− 1,
2. V ′(t) = 0, aj + T ≤ t ≤ aj+1, 0 ≤ j ≤ 2n− 1,
3. aj = jT , 0 ≤ j ≤ n, aj = jT + (j − n)δ, n+ 1 ≤ j ≤ 2n.

Lemma 4.5. Let F, v, V, ε0 be as in Lemma 3.4. Then for every δ > 0 sufficiently
small, for every N ∈ N, for every n sufficiently large, the (δ, n)-padding V ′ of V
has the form V ′(t) = v′(F ′t (0)), where F ′t : S′ → S′ is a T ′-periodic time-change of
a solenoidal flow, v′ : S′ → R is continuous, (F ′, v′) is δ

ε0
-close to a lift of (F, v),

and (F ′, v′) is (N,F )-mixed.

Proof. Let NS ∈ N be the period of the solenoidal flow FSt . Define S′ as the 2n-
cover of S. Define a continuous function ρ : S → R supported on {Ft(0), T − ε0 <
t < T} such that

∫ T
0
e−ρ(Ft(0))dt = T + δ. As in Lemma 3.4, we can choose ρ with

‖ρ‖C0 < δ
ε0

. Let ρ′ : S′ → R be defined so that ρ′ = 0 on [0, nNS ] and ρ′ = ρ◦pS′,S
on [nNS , 2nNS ].

Let F ′ be the solenoidal flow with wF ′ = eρw ◦ pS′,S , and let v′ = v ◦ pS′,S .
All properties, but the last one, follow as in Lemma 3.4. For the last property,
notice that if tj = [ j

δN ](T + δ) then for x ∈ {F ′s(0), 0 ≤ s ≤ nT − tj} we have

pS′,S ◦ F ′tj (x) = F[j/(δN)]δ(pS′,S(x)), which belongs to {Fs(pS′,S(x)), j
N − δ ≤ s ≤

j
N }, and for x ∈ {F ′s(0), nT ≤ s ≤ T ′ − tj} we have pS′,S ◦ F ′tj (x) = pS′,S(x). �

Lemma 4.6. Let V : R/TZ be a continuous function with V (0) = 0. If V is
(ε, C,M)-uniform then for δ > 0 sufficiently small, for every n ∈ N, if V ′ is the
(δ, n)-padding of V , then V ′ is (ε, C,M)-uniform.



22 A. AVILA

Proof. Let A(·) = A[V ](·). Let J ⊂ Ω(V ) ∩ (−∞,M ] be a finite union of closed
intervals such that

(92) sup
s
µVs(−∞,M ]− µVs,C(J) < ε0 < ε,

where Vs is the shift of V and µVs,C is the truncation of the spectral measure.
If E ∈ Ω(V ), then B(E)A(E)B(E)−1 = Rθ(E), where B = B(A(E)) and θ(E) =

Θ(A(E)) are analytic functions and d
dE θ(E) > 0. Let

(93) Aδ(E) = D(E)R
δE

1/2

2π

D(E)−1A(E),

where D(E) =

(
E1/4 0

0 E−1/4

)
. Then

(94) A′(E) = Aδ(E)nA(E)n,

where A′(·) = A[V ′](·).
For every κ > 0, for δ > 0 sufficiently small, it is clear that for every 0 ≤ t ≤ δ, for

every E ∈ J , we have d(H(t) · u(E), u(E)) < κ, where H(t) = D(E)R
tE

1/2

2π

D(E)−1

is the exponential of t

(
0 −E
1 0

)
and u(·) = u[V ](·).

Notice that for δ > 0 sufficiently small, we have |trAδ(E)| < 2 for E ∈ J .
Moreover, Bδ(E) = B(Aδ(E)) and θδ(E) = Θ(Aδ(E)) converge to B(E) and θ(E),
when δ → 0, as analytic functions of E ∈ J . In particular,

(95) lim
δ→0

sup
n

sup
E∈J
‖B(E)A′(E)B(E)−1 −Rn(θ(E)+θδ(E))‖ = 0.

For 0 < η < 1/2, let Jδ,n,η ⊂ J be the set of all E such that 2n(θ(E) + θδ(E)) is at

distance at least η from Z. Since d
dE θ(E) > 0 and d

dE θδ(E) > 0, we get, for every
δ > 0 small,

(96) lim
n→∞

|Jδ,n,η| = (1− 2η)|J |.

For every 0 < η < 1/2 and κ > 0, if δ is sufficiently small, then for every n and
for every E ∈ Jδ,n,η, we have E ∈ Ω(V ′) and d(u′(E), uδ(E))+d(uδ(E), u(E)) < κ,
where u′(·) = u[V ′](·) and uδ(E) = u(Aδ(E)). Notice that A(E)j ·u′(E) = u′(E, aj)
for 0 ≤ j ≤ n, and Aδ(E)2n−j · u′(E, aj) = u′(E) for n ≤ j ≤ 2n. In particular,

(97) d(u′(E, aj), u(E)) < κ.

Thus for 0 ≤ j ≤ 2n− 1 and aj ≤ t ≤ aj + T , we get

(98) d(u′(E, t), u(E, t− aj)) < κ.

For n ≤ j ≤ 2n−1 and aj +T ≤ t ≤ aj +T +δ, we have H(aj +T +δ− t)u′(E, t) =
u′(E, aj+1), so that

d(u′(E, t), u(E)) = d(u′(E, aj+1), H(aj + T + δ − t) · u(E))(99)

≤ d(u′(E, aj+1), u(E)) + d(H(aj + T + δ − t) · u(E)), u(E)) < 2κ.

It follows that for each 0 ≤ t′ ≤ T ′ we can find some 0 ≤ t(t′) ≤ T , defined by
t(t′) = t′ − aj if aj ≤ t′ ≤ aj + T for some j, and t(t′) = 0, if aj + T ≤ t ≤ aj+1 for
some j, such that for every E ∈ Jδ,n,η, we have d(u′(E, t′), u(E, t)) < 2κ.
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It follows that for every 0 < η < 1/2 and κ > 0, for δ > 0 sufficiently small, for
every n sufficiently large,

µV ′
t′ ,C

(Jδ,n,η) ≥ e−2κµVt,C(Jδ,n,η)(100)

≥ µVt,C(J)− (1− e−2κ)C|J | − e−2κC|J r Jδ,n,η|
≥ µVt,C(J)− 2(κ+ η)C|J |

(where µV ′
t′ ,C

denotes the truncation of the spectral measure µV ′
t′

for the shift of

V ′). Thus, if η + κ is sufficiently small, we get

(101) µV ′
t′ ,C

(−∞,M ] ≥ µVt,C(J)− ε− ε0
2

.

Notice that t(t′) is such that for every C1 > 0, ε1 > 0, we have, for every δ > 0
sufficiently small, for every n ∈ N,

(102) sup
|s|≤C1

|V ′(t′ + s)− V (t+ s)| < ε1.

By Lemma 4.1, if δ > 0 is sufficiently small we have

(103) µVt′ (−∞,M ] < µVt(−∞,M) +
ε− ε0

2
.

Together with (92), it follows that

(104) µV ′
t′

(−∞,M ] < µV ′
t′ ,C

(−∞,M ] + ε,

as desired. �

Remark 4.7. The construction also gives that for every κ > 0, for a subset of Ω(V )
whose complement has arbitrarily small measure, we have

(105) sup
t′
d(u[V ′](E, t′), i) ≤ sup

t
d(u[V ](E, t), i) + 2κ.

Proof of Theorem 4. Define a sequence of T (n)-periodic time-changes of solenoidal

flows F
(n)
t : S(n) → S(n) and a sequence of continuous functions v(n) : S(n) → R in

the following way.

First take T (0) = 1, S(0) = R/Z, F
(0)
t = FS

(0)

t , and v(0) : R/Z → R a non-
constant smooth function with v(0) = 0 near 0. Let κ0 = 1. Then for j ≥ 1,

1. Choose Cj−1 > 0 so that t 7→ v(j−1)(F
(j−1)
t (0)) is (21−j , Cj−1, 2

j−1)-uniform,

2. Choose (F (j), v(j)) so that it is (2−j
′
, Cj′ , 2

j′)-uniform for all 0 ≤ j′ ≤
j − 1, F (j) is (2j−1, F (j−1))-mixed, and (F (j), v(j)) is κj−1-close to a lift

of (F (j−1), v(j−1))
3. Let 0 < κj < κj−1/2 be such that if (F, v) is 2κj-close to the lift of (F (j), v(j))

then (F, v) is (2j−1, F (j−1))-mixed.

The first step is an application of Lemma 4.2, the second is an application of
Lemmas 4.6 (notice that by the previous choices, (F (j−1), v(j−1) is (2−j

′
, Cj′ , 2

j′)-
uniform for all 0 ≤ j′ ≤ j − 1) and 4.5, and the third is an application of Lemma
4.3.

Let S be the projective limit of the S(j) and let (F, v) be the projective limit
of the (F (j), v(j)). Then F is (2j , F (j))-mixed for all j ≥ 1, so it is weak mixing

by Lemma 4.4. We also have that for every x ∈ S, V
(j)
x : t 7→ v(j)(F

(j)
t (pS,S(j)(x))

converges to Vx : t 7→ v(Ft(x)) uniformly on compacts. It follows that the spectral
measure µ = µVx is the limit of the spectral measures µ

V
(j)
x

. For every C > 0, and
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up to taking a subsequence, the truncations µ
V

(j)
x ,C

converge to a measure µC ≤ µ
which is absolutely continuous with density bounded by C.

Then we have

(106) µ(−∞, 2j)−
∫ 2j

−∞

dµ

dE
dE ≤ lim

k→∞
µ
V

(k)
x

(−∞, 2j)− µ
V

(k)
x ,Cj

(−∞, 2j) ≤ 2−j .

The result follows. �

Remark 4.8. Notice that the construction allows us to obtain (by Remark 4.7), that
for k ∈ N there exists a subset Γ(k) ⊂ Ω(V (k))∩Ω(V (k+1)) such that |Ω(k)rΓ(k)| ≤
2−k and

(107) sup
t
d(u[V (k+1)](E, t), i) ≤ sup

t
d(u[V (k)](E, t), i) + 2−k.

Moreover, by Lemma 2.7, we may also assume that |Σ(F, v) r Ω(V (k))| ≤ 2−k.
It follows that for almost every E ∈ Σ(F, v), there exists C(E) > 0 such that
E ∈ Ω(V (k)) for every k sufficiently large and supt d(u[V (k)](E, t), i) ≤ C(E). This
implies that supt sups ‖A[V (k)](E, t, s)‖ ≤ eC(E) and hence

(108) sup
t

sup
s
‖A[F, v](E, x, t, s)‖ ≤ eC(E),

so that every eigenfunction with such an energy must be bounded.

5. Discrete case: unbounded eigenfunctions

5.1. Schrödinger cocycles. Given a function V : Z → R, we define the transfer
matrices A[V ](E,m, n) so that A[V ](E,m,m) = id ,

(109) A[V ](E,m, n+ 1) =

(
E − V (n) −1

1 0

)
A[V ](E,m, n).

An eigenfunction of the Schrödinger operator with potential V and energy E is a

solution of

(
un

un−1

)
= A[V ](E,m, n) ·

(
um

um−1

)
.

Lemma 5.1. If n > m and |trA[V ](E,m, n)| < 2 then

(110)
d

dE
Θ(A[V ](E,m, n)) < 0.

Assume now that V is periodic of period N . In this case we write A[V ](E,n) =
A[V ](E,n, n+N) and A[V ](E) = A[V ](E, 0). Note that trA[V ](E,n) = trA[V ](E)
for all n ∈ N. Then the spectrum Σ = Σ(V ) of the Schrödinger operator with
potential V is the set of all E with |trA[V ](E)| ≤ 2. Let also Ω = Ω(V ) be the set
of all E with |trA[V ](E)| < 2. We note that Σ r Ω = ∂Ω consists of finitely many
points. For E ∈ Ω(V ), put u[V ](E,n) = u(A[V ](E,n)) and u[V ](E) = u[V ](E, 0).

Let f : X → X be a minimal uniquely ergodic map with invariant probability
measure σ. Given v : X → R continuous, we let A[f, v](E, x,m, n) = A[V ](E,m, n)
where V (n) = v(fn(x)). We define the Lyapunov exponent

(111) L(E) = lim
n→∞

1

n

∫
ln ‖A[f, v](E, x, 0, n)‖dσ(x).

We will use the following criterion for the existence of ac spectrum (Ishii-Pastur,
Kotani, Last-Simon).
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Theorem 6 (see [D]). The ac part of the spectral measure of the discrete Schrödinger
operator with potential V (n) = v(fn(x)) is equivalent to the restriction of Lebesgue
measure to {L(E) = 0}.

Remark 5.2. The fact that the essential support of the ac spectrum is contained
in {L(E) = 0}, for almost every x, is the Ishii-Pastur Theorem. Kotani’s Theo-
rem gives the reverse inclusion, still for almost every x. Those results apply for
general ergodic dynamics. Last-Simon proved that for minimal dynamics the es-
sential support of the ac spectrum is constant everywhere (and not only almost
everywhere).

5.2. Construction of families of periodic potentials. Let V : R/N0Z×Z/N1Z→
R be a continuous function. We think of V as a one-parameter family (parametrized
by R/N0Z) of periodic potentials Vt(·) = V(t, ·) (of period N1).

We define some basic operations on such a V. First, for n ∈ N, the n-repetition
V ′ : R/N0Z× Z/nN1Z→ R of V is given by V ′(t, j) = V(t, j). We obviously have

(112) A[V ′t](E,m) = A[Vt](E,m)n.

Secondly, given some n ∈ N, we define the n-twist V ′ : R/N0Z × Z/nN1Z → R
of V by V ′(t, j) = V(t + N0

k
n , l), whenever j = kN1 + l with 0 ≤ j ≤ n − 1 and

0 ≤ l ≤ N1 − 1. We notice that

(113) A[V ′t](E) = A[Vt+N0
n−1
n

](E) · · ·A[Vt](E).

For the third operation, we will make use of some fixed smooth function Ψ :
[−1, 2] → [0, 1], with Ψ = 0 in a neighborhood of −1 and 2, and Ψ = 1 in a
neighborhood of [0, 1]. We also assume that N1 ≥ 3. Then for δ > 0 and n ∈ N, we
define the (δ, n)-slide V ′ : R/2nN0Z× Z/3N1Z→ R of v by

(114) V ′(t, j) = V(t, j), 0 ≤ j ≤ 2N1 − 1,

(115) V ′(t, j) = V(t, j), 2N1 ≤ j ≤ 3N1 − 1 t ∈ [0, nN0 − 1] ∪ [nN0 + 2, 2nN0],

and

(116) V ′(t, j) = V(t+δΨ(t−nN0), j), 2N1 ≤ j ≤ 3N1−1 t ∈ [nN0−1, nN0+2].

Notice that we have

(117) A[V ′t](E) = A[Vt](E)3, t ∈ [0, nN0 − 1] ∪ [nN0 + 2, 2nN0],

(118) A[V ′t](E) = A[Vt+δΨ(t−nN0)](E) ·A[Vt](E)2, t ∈ [nN0 − 1, nN0 + 2].

Lemma 5.3. Fix some closed interval J ⊂ R and let u0 : J × [−1, 2] → H be a
smooth function with

(119) sup
t∈[0,1]

∣∣∣∣ ddtu0(E, t)

∣∣∣∣ > 0

for every E ∈ J . There exists ε1 > 0, C ′ > 0 and δ0 > 0 with the following property.
Let V : R/N0Z × Z/N1Z → R be a smooth function. Let E0 ∈ intJ ∩

⋂
t Ω(Vt).

Assume that [−1, 2] 3 t 7→ u[Vt](E0) is (strictly) ε1-close in the C1-topology to
[−1, 2] 7→ u0(E0, t). Then there exists ε0 > 0 such that for every 0 < ε < ε0,
for every κ > 0, for every 0 < δ < δ0, for every N2 sufficiently large, for every
N3 sufficiently large, for every N4 sufficiently large, for every N5 sufficiently large,
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if V ′ : R/2N4N0Z × Z/3N5N3N2N1Z is the N5-twist of the (δ,N4)-slide of the
N2-repetition of the N3-twist of V, then there exists a compact set

(120) Λ ⊂ [E0 − ε, E0 + ε] ∩
⋂
t

Ω(V ′t)

such that

1. |Λ| > 2(1− C ′δ)ε,
2. For E ∈ Λ, [−1, 2] 3 t 7→ u[V ′t](E) is (strictly) ε1-close in the C1-topology to

[−1, 2] 3 t 7→ u0(E, t).
3. For E ∈ Λ,∣∣∣∣∣∣ 1

6N5N4N3N2N1N0

∑
j∈Z/3N5N3N2N1Z

∫ 2N4N0

0

d(u[Vt](E, j), i)dt(121)

− 1

N1N0

∑
j∈Z/N1Z

∫ N0

0

d(u[Vt](E, j), i)dt

∣∣∣∣∣∣ < κ,

4. For E ∈ Λ,

(122) inf
t

sup
j
d(u[V ′t](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i)− κ,

5. For any C ′δ < γ < C ′−1, there exists a compact set Λ′ ⊂ Λ with |Λ′| > γε
such that for E ∈ Λ′,

(123) inf
t

sup
j
d(u[V ′t](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i) + C ′−1 δ

γ
− κ.

Proof. Write V ′′′′ for the N3-twist of V, V ′′′ for the N2-repetition of V ′′′′, V ′′ for
the (δ,N4)-slide of V ′′′.

In the first step, going from V to V ′′′′, we obtain, using Lemma 2.12, a set of good
energies E ∈ [E0 − ε, E0 + ε] ∩

⋂
t Ω(V ′′′′t ) of measure at least 2ε(1 − δ), such that

t 7→ u[V ′′′′t ](E) is C1 close to t 7→ u[Vt](E), and letting B(E, t) = B(A[V ′′′′t ](E)),
θ(E, t) = Θ(A[V ′′′′t ](E)), we have N2(supt θ(E, t) − inft θ(E, t)) arbitrarily small.
Moreover, the random variables θ(E, 0) near E0 are becoming equidistributed in
R/Z as N3 grows. We also have that

(124) inf
t

sup
j
d(u[V ′′′′t ](E, j)) ≥ sup

t
sup
j
d(u[Vt](E, j), i)−

κ

3
.

The second step does not change much, since E ∈ Ω(V ′′′t ) provided N2θ(E, t) is
not an integer, and in this case u[V ′′′t ](E, j) = u[V ′′′′t ](E, j). On the other hand, if
{jθ(E, 0)}0≤j≤N2−1 is 1

100 dense mod 1, then for any w ∈ H, and for every t,
(125)

sup
0≤j≤N3N2N1−1

d(A[V ′′′t ](E, 0, j) · w, i) ≥ sup
l
d(u[V ′′′t ](E, l), i) +

1

2
d(w, u[V ′′′t ](E)).

The condition on θ(E, 0) demands the exclusion of some energies, but of arbitrarily
small measure (which we can take less than 2δε), provided N2 is large.

Going from V ′′′ to V ′′, for such good energies E we obtain

trA[V ′′t ](E) = 2 cos 2N2π(2θ(E, t) + θ(E, t+ δΨ̃(t)))(126)

− (λ(E, t)− λ(E, t)−1)2 sin 4N2πθ(E, t) sin 2N2πθ(E, t+ δΨ̃(t)),
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with

(127) λ(E, t) = e
d(u[V′′′t ](E),u[V′′′

t+δΨ̃(t)
](E))/2

,

and Ψ̃ : R/2N4N0Z → [0, 1] is given by Ψ̃(t) = 0 if t ∈ [0, N4N0 − 1] ∪ [N4N0 +

2, 2N4N0] and Ψ̃(t) = Ψ(t−N4N0) if t ∈ [N4N0 − 1, N4N0 + 2].
Notice that λ(E, t)−1 vanishes if t ∈ [0, N4N0−1]∪[N4N0+2, 2N4N0], is at most

of order δ everywhere, and gets to be of precisely order δ for some t ∈ [N0, N0 + 1]
(here we use (119)).

We now exclude E with sin 6N2πθ(E, 0) of order δ. The excluded set of energies
has measure of order 2δε. For the remaining energies, |trA[V ′′t ](E)| < 2− δ2 for all
t.

By (125), for every t, using that u[V ′′t ](E, j) = A[V ′′t ](E, 0, j) · u[V ′′t ](E) and also
A[V ′′t ](E, 0, j) = A[V ′′′t ](E, 0, j) for 0 ≤ j ≤ 2N3N2N1, we have

(128) sup
j
d(u[V ′′t ](E, j), i) ≥ sup

j
d(u[V ′′′t ](E, j), i) +

1

2
d(u[V ′′t ](E), u[V ′′′t ](E)),

and together with (124) we get
(129)

sup
j
d(u[V ′′t ](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i) +

1

2
d(u[V ′′t ](E), u[V ′′′t ](E))− κ

3
.

In particular, we always have

(130) sup
j
d(u[V ′′t ](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i)−

κ

3
.

We compute the distance from u[V ′′′t ](E) to u[V ′′t ](E). It is equal to the distance
from w′(E, t) to i where w′(E, t) is the solution z ∈ H of the equation az2 +bz+c =
0, where

a = cos 2N2πθ(E, t+ δΨ̃(t)) sin 4N2πθ(E, t)(131)

+ λ(E, t)−2 sin 2N2πθ(E, t+ δΨ̃(t)) cos 4N2πθ(E, t),

(132) b = (λ(E, t)2 − λ(E)−2) sin 2N2πθ(E, t+ δΨ̃(t)) sin 4N2πθ(E, t)),

c = cos 2N2πθ(E, t+ δΨ̃(t)) sin 4N2πθ(E, t)(133)

+ λ(E, t)2 sin 2N2πθ(E, t+ δΨ̃(t)) cos 4N2πθ(E, t) = 0.

If the distance from N2θ(E, 0) to 1
3 + Z is exactly γ, with C2δ < γ < C−1

2 , then

(134) C−1
3

λ(E, t)2 − λ(E, t)−2

γ
≤ d(w′(E, t), i) ≤ C3

λ(E, t)2 − λ(E, t)−2

γ
.

Using that λ(E, t)− 1 does become of order δ for some t, we get, for such E,

(135) sup
t

sup
j
d(u[V ′′t ](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i) + C−1

4

δ

γ
− κ

3
.

On the other hand, if one only excludes the energies with sin 6N2πθ(E, 0) of
order δ, we still get that d(w′(E, t), i) is uniformly bounded as N4 grows, which
implies that supt supj d(u[V ′′t ](E, j), i) is uniformly bounded as N4 grows.

Proceeding with the last step, we get

(136) inf
t

sup
j
d(u[V ′t](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i)−

2κ

3
,
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while for 2C2δ < γ < C−1
2 and a set of E of probability of order γ we get

(137) inf
t

sup
j
d(u[V ′t](E, j), i) ≥ sup

t
sup
j
d(u[Vt](E, j), i) + C−1

4

δ

γ
− 2κ

3
.

It remains to check that the average of d(u[V ′t](E, j), i) is close to the average
of d(u[Vt](E, j), i). The first, second, and fourth steps clearly do not increase the
average significantly. For the third step, we have u[V ′′t ](E, j) = u[V ′′′t ](E, j) except
when t ∈ [N4N0 − 1, N4N0 + 2]. Since d(u[V ′′t ](E, j), i) remains bounded as N4

grows, we conclude that the average can not be increased significantly in the third
step as well. �

With this result in hands, analogues of Lemmas 3.3 and 3.1 can be easily ob-
tained. We state the conclusion:

Lemma 5.4. Fix some closed interval J ⊂ R and let u0 : J × [−1, 2] → H be a
smooth function with

(138) sup
t∈[0,1]

∣∣∣∣ ddtu0(E, t)

∣∣∣∣ > 0

for every E ∈ J . There exists ε1 > 0 with the following property. Let V(0) :

R/N (0)
0 Z × Z/N (0)

1 Z → R be a smooth function. Let Γ0 ⊂ J ∩
⋂
t Ω(V(0)

t ) be a

compact set of E such that [−1, 2] 3 t 7→ u[V(0)
t ](E) is (strictly) ε1-close to [−1, 2] 3

t 7→ u0(E, t) in the C1-topology.
Let C > 0 be such that

(139) sup
E∈Γ0

1

N0N1

N1−1∑
j=0

∫ N0

0

d(u[V(0)](E, j), i)dt < C.

Then for every ξ > 0, C0 > 0, for every δ > 0 sufficiently small, there exist

0 < P < ξδ−1, and sequences N
(j)
l , 1 ≤ j ≤ P , 2 ≤ l ≤ 5, such that if we

define V(j), 1 ≤ j ≤ P so that V(j) is obtained by N
(j)
5 -twist of the (δ,N

(j)
4 )-

slide of the N
(j)
2 -repetition of the N

(j)
3 -twist of V(j−1), then there exists a compact

subset Γ ⊂ Γ0 ∩
⋂
t Ω(V(P )

t ) such that |Γ0 r Γ| < ξ, and for every E ∈ Γ, letting

N ′0 = N02P
∏P
j=1N

(j)
4 and N ′1 = N13P

∏P
j=1N

(j)
5 N

(j)
3 N

(j)
2 , we have

(140) inf
t

sup
j
d(u[V(P )

t ](E, j), i) ≥ C0,

(141)
1

N ′0N
′
1

N ′1−1∑
j=0

∫ N ′0

0

d(u[V(P )
t ](E, j), i) < C.

Moreover, for E ∈ Γ, [−1, 2] 3 t 7→ u[V(P )
t ](E) is (strictly) ε1-close to [−1, 2] 3 t 7→

u0(E, t) in the C1-topology.

Remark 5.5. In the setting of the previous lemma, we have the following extra
information on V(P ). There exists n ∈ N such that for every E ∈ Γ we have

(142) inf
w∈R2,‖w‖=1

sup
0≤l≤n

A[V(P )
t ](E, j, j + l) > e(C0−2C)/4/2,

except for a set of (t, j) of measure less than C
−1/2
0 . Indeed, if (t, j) is such that

d(u[V(P )
t ](E, j), i) ≤ C

1/2
0 C and l ∈ N is such that d(u[V(P )

t ](E, j + l), i) ≥ C0,



ON THE KOTANI-LAST AND SCHRÖDINGER CONJECTURES 29

then A[V(P )
t ](E, j, j + l+ kN ′1) decomposes as a product B(t, j + l)−1Rθ̃+kθB(t, j),

where B(t,m) = B(A[V(P )
t ](E,m)), and θ = Θ(A[V(P )

t ](E, j)). Since 2θ /∈ Z, this
implies that for any w we can find k such that Rθ̃+kθB(t, j) · w has angle at most

π/4 with the direction most expanded by B(t, j + l)−1, which gives the estimate

‖B(t, j + l)−1Rθ̃+kθB(t, j) · w‖ ≥ ‖B(t, j + l)‖‖B(t, j)‖−1/
√

2.

5.3. Construction of almost periodic dynamics. Let N0, N1 ∈ N, and let
a ∈ Q be an integer multiple of N0

N1
. Consider a smooth family of periodic potentials

V : R/N0Z × Z/N1Z → R. It is natural to consider this periodic family as arising
from the non-ergodic dynamics (t, j) 7→ (t, j+1) on R/N0Z×Z/N1Z, in the obvious
way. But we can also think of it as arising from the dynamics (t, j) 7→ (t+a, j+ 1),
by considering the sampling function v : R/N0Z×Z/N1Z→ R defined by V(t, j) =
v(t+ ja, j).

Such a point of view is advantageous in that it allows to consider our three
operations on potentials as “small perturbations”.

Take V ′ to be the n-repetition of V. Defining v′ : R/N0Z × Z/nN1Z → R by
V ′(t, j) = v′(t+ ja, j), we obviously still get v′(t, j) = v(t, j).

Take V ′ to be the n-twist of V. Set a′ = a + N0

nN1
. Defining v′ : R/N0Z ×

Z/nN1Z → R by V ′(t, j) = v′(t + ja′, j), we see that supt supj |v′(t, j) − v(t, j)|
becomes small for large n.

Take V ′ to be the (δ, n)-slide of V. Defining v′ : R/2nN0Z × Z/3N1Z → R by
V ′(t, j) = v′(t+ja, j), we see that supt supj |v′(t, j)−v(t, j)| ≤ δ supt supj | ddtv(t, j)|.
Moreover, we also have supt supj | ddtv

′(t, j)| ≤ (1 +K1δ) supt supj | ddtv(t, j)|, where

K1 = supt | ddtΨ(t)| is a fixed constant.
Given those observations, we can proceed with the inductive construction.

Proof of Theorem 1. Choose 0 < λ0 < 1/2, and let J = [−2 + 4λ0, 2 − 4λ0]. Let

u0(E, t) be the fixed point of

(
E − 2λ0 cos 2πt −1

1 0

)
. Let ε1 > 0 be as in Lemma

5.4. Let C1 >
∫ 1

0
d(u0(E, t), i)dt.

We now produce sequences Vj , vj : R/N0,jZ × Z/N1,jZ → R, aj ∈ Q, and
compact sets Γj as follows.

First set N0 = N1 = 1, V0(t, j) = 2λ cos 2πt, v0 = V0, a0 = 0, Γ0 = J .
We now apply Lemma 5.4, to obtain Γ1 ⊂ Γ0 with |Γ0 r Γ1| arbitrarily small,

and some V1 : R/N0,1Z× Z/N1,1Z→ R such that for E ∈ Γ1

(143) inf
t

sup
j
d(u[V1

t ](E, j), i) ≥ 2C1 + 4,

(144)
1

N0,1N1,1

N1,1−1∑
j=0

∫ N0,1

0

d(u[V1
t ](E, j), i) < C1,

and moreover, [−1, 2] 3 t 7→ u[V1
t ](E, j)) is (strictly) ε1-close to [−1, 2] 3 t 7→

u0(E, t) in the C1-topology. Using Remark 5.5, we see that there exists q1 ∈ N
such that for every E ∈ Γ1,

(145) inf
w∈R2,‖w‖=1

sup
0≤l≤q1

‖A[V1
t ](E, j, j + l) · w‖ > e

2
,

except for a set of (t, j) of measure less than (2C1 + 4)−1/2.



30 A. AVILA

Moreover, we can alternatively realize V1(t, j) = v1(t + a1j, j) for appropriate
a1, so that supt supj |v1(t, j) − v0(t, j)| is arbitrarily small. Notice that |a1 − a0|
can be also taken arbitrarily small but non-zero.

We continue by induction, obtaining a decreasing sequence Γk, and Vk, vk, ak
such that for k ≥ 2 and E ∈ Γk we have

1. inft supj d(u[Vkt ](E, j), i) ≥ 2C1 + 4k,

2. 1
N0,kN1,k

∑N1,k−1
j=0

∫ N0,k

0
d(u[Vkt ](E, j), i) < C1,

3. [−1, 2] 3 t 7→ u[Vkt ](E, j) is (strictly) ε1-close to [−1, 2] 3 t 7→ u0(E, t) in the
C1-topology,

4. supt supj |vk(t, j)− vk−1(t, j)| < 2−k,
5. There exists qk ∈ N such that for every E ∈ Γk,

(146) inf
w∈R2,‖w‖=1

sup
0≤l≤qk

‖A[Vkt ](E, j, j + l) · w‖ > ek

2
,

except for a set of (t, j) of measure (strictly) less than (2C1 + 4k)−1/2.
6. |ak − ak−1| is non-zero but smaller than 1

2k−1N1,k−1
.

We now construct the sampling function and the dynamics.
Let K be the projective limit of Z/N1,jZ (a Cantor group), and let S be the

projective limit of R/N0,jZ (a solenoid). Then v(t, j) = lim vk(t, j) defines a con-
tinuous function on S × K (for simplicity, we ommit the projections S × K →
R/N0,kZ× Z/N1,kZ from the notation). This is the sampling function.

Notice that a = lim ak is irrational, since ak are rational with denominators at
most N1,k and 0 < |a − ak| ≤ 1

2k−1N1,k
. Thus f(t, j) = (t + a, j + 1) is a uniquely

ergodic translation in the compact Abelian group S×K. This is the base dynamics.
Let Γ =

⋂
Γk. By construction, Γ is a compact set of positive Lebesgue measure.

Notice that

(147) sup
x

sup
E∈Γ

sup
0≤l≤n

‖A[f, v](E, x, 0, l)−A[Vkt ](E, j, j + l)‖

(with (t, j) the projection of x) can be made arbitrarily small, for any n chosen after
vk is constructed, but before vk+1 is constructed. Choosing parameters growing
sufficiently fast we get

(148) lim
n→∞

sup
x

1

n
ln ‖A[f, v](E, x, 0, n)‖ = 0,

i.e., the Lyapunov exponent vanishes for E ∈ Γ, so that Γ is contained in the
essential support of the ac spectrum for every x, and moreover, for every k ≥ 1 and
E ∈ Γk,

(149) inf
w∈R2,‖w‖=1

sup
0≤l≤qk

‖A[f, v](E, x, 0, l) · w‖ ≥ ek

4
,

except for a set of x of measure less than (2C1 + 4k)−1/2. Thus, for every E ∈ Γ,
for almost every x we have

(150) inf
w∈R2,‖w‖=1

lim sup
l→∞

‖A[f, v](E, x, 0, l) · w‖ =∞,

which is the desired eigenfunction growth. �
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6. Discrete case: breaking almost periodicity

6.1. Slow deformation. The following are variations of Lemmas 2.11 and 2.12,
and we leave the proofs for the reader.

Lemma 6.1. Let J ⊂ R be a closed interval, let N ∈ N, and let A : J × R/Z →
SL(2,R) be a smooth function such that |trA(N)(E, t)| < 2 for (E, t) ∈ J × R/Z,
where

(151) A(N)(E, t) = A(E, t+
N − 1

N
) · · ·A(E, t).

Let B(E, t) = B(A(N)(E, t)) and let θ(E, t) be a smooth function satisfying

(152) B(E, t+
1

N
)A(E, t)B(E, t)−1 = Rθ(E,t).

Then for every m, k ∈ N, there exists n(m) ∈ N and Ck,m > 0 such that for every
n ≥ n(m), there exist smooth functions B(m,n) : J × R/Z → SL(2,R), θ(m,n) :
J × R/Z→ R such that

1. ‖A(m,n) −Rθ(m,n)
‖Ck ≤

Ck,m
nm , where

(153) A(m,n)(E, t) = B(m,n)(E, t+
n+ 1

nN
)A(E, t)B(m,n)(E, t)

−1,

2. ‖B(m,n) −B‖Ck ≤
Ck,m
n ,

3. ‖θ(m,n) − θ‖Ck ≤
Ck,m
n .

Lemma 6.2. Under the hypothesis of the previous lemma, assume moreover that
θ̃(E) =

∫
R/Z θ(E, t)dt satisfies d

dE θ̃(E) 6= 0 for every E ∈ J . For n ∈ N, let

A(N∗n) : J × R/Z→ SL(2,R) be given by

(154) A(N∗n)(E, t) = A(E, t+(nN−1)
n+ 1

nN
)A(E, t+(nN−2)

n+ 1

nN
) · · ·A(E, t).

Then there exist functions θ̃(n) : J → R/Z such that for every measurable subset
Z ⊂ R/Z,

(155) lim
n→∞

|{E ∈ J, θ̃(n)(E) ∈ Z}| = |Z||J |,

(156) lim
n→∞

|{E ∈ J, θ̃(n)(E) + θ̃(2n)(E) ∈ Z}| = |Z||J |,

with the following property. For every δ > 0,

(157) lim
n→∞

‖trA(N∗n)(E, t)− 2 cos 2πθ̃(m,n)(E)‖C0(J×R/Z,R) = 0,

(158) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖Θ(A(N∗n)(E, ·))− θ̃(n)(E)‖C1(R/Z,R) = 0,

(159) lim
n→∞

sup
| sin 2πθ̃(n)(E)|>δ

‖u(A(N∗n)(E, ·))− u(A(N)(E, ·))‖C1(R/Z,C) = 0.
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6.2. The construction. In this section, we will interpret a continuous function
V : R/NZ→ R as a one-parameter family of N -periodic potentials Vt(j) = V(t+j).

For n ∈ N, we define the n-crumbling V ′ : R/3nNZ→ R of v by

1. V ′(t) = V(n+1
n t), t ∈ [0, nN ],

2. V ′(t) = V( 2n+1
2n (t− nN)), t ∈ [nN, 3nN ].

Lemma 6.3. Let V : R/NZ be a smooth function which is constant near 0. Then
for every δ > 0, for every n sufficiently large, letting V ′ be the n-crumbling of V,
we have |

⋂
t Ω(Vt) r

⋂
t Ω(V ′t)| < δ.

Proof. Fix a compact interval J ⊂
⋂
t Ω(Vt). Apply Lemma 6.2 to A(E, t) =(

E − v(Nt) −1
1 0

)
. It yields a sequence θ̃(n)(E).

If V ′ is the n-crumbling of v, then for t ∈ [0, 1], we get A[V ′t](E, 0, nN) =
A(N∗n)(E, n+1

nN t) and A[Vt](E,nN, 3nN) = A(N∗2n)(E, 2n+1
2nN t). Thus for t ∈ [0, 1]

we have

(160) A[Vt](E) = A(N∗2n)(E,
2n+ 1

2nN
t)A(N∗n)(E,

n+ 1

nN
t)

As long as | sin 2πθ̃(n)| and | sin 2πθ̃(2n)| are not too small, we can write, for
t ∈ [0, 1],
(161)

A[V ′t](E) = B(2n)(E, t)−1Rθ(2n)(E,t)B
(2n)(E, t)B(n)(E, t)−1Rθ(n)(E,t)B

(n)(E, t),

where B(m) = B(A(N∗m)(E, t)) and θ(m)(E, t) = Θ(A(N∗m)(E, t)). Notice that
B(n) and B(2n) are both C1-close to B(A[Vt](E)) as functions of t ∈ [0, 1]. More-

over, θ(n)(E, t) is close to θ̃(n)(E) and θ(2n)(E, t) is close to θ̃(2n)(E).

It follows that for t ∈ [0, 1], trA[V ′t](E) is close to 2 cos 2π(θ̃(2n)(E) + θ̃(n)(E)).

Thus, as long as | sin 2π(θ̃(n) + θ̃(2n))| is not small, we have |trA[V ′t](E)| < 2 for
every t ∈ [0, 1]. Since trA[V ′t](E) is 1-periodic, this implies that |trA[V ′t(E)| < 2 for
all t. �

Remark 6.4. One also easily gets from this construction,

(162) sup
t
d(u[V ′t](E), i) < sup

t
d(u[Vt](E), i) + δ

except for a set of E ∈
⋂
t Ω(Vt) ∩

⋂
t Ω(V ′t) of arbitrarily small measure.

Proof of Theorem 4. Starting with a smooth non-constant function V(0) : R/Z→ R,
apply Lemma 6.3 successively to obtain a sequence V(k) : R/N (k)Z → R such

that V(k) is the nk-crumbling of V(k−1), and compact sets Γ(k) ⊂
⋂
t Ω(V(k)

t ) with

Γ(k) ⊂ Γ(k−1) and limk→∞ |Γ(k)| > 0. By taking parameters nk growing sufficiently
fast, we ensure that for E ∈ Γ(k+1) we have

(163) sup
1≤j≤N(k)

| sup
t

ln ‖A[V(k+1)
t (E, 0, j)‖ − sup

t
ln ‖A[V(k)

t ](E, 0, j)‖| ≤ 1

2k
,

(164) sup
t

1

N (k+1)
ln ‖A[V(k+1)

t ](E, 0, N (k+1))‖ ≤ 1

2k
.

We now turn to the dynamical realization. Let Ñ (k) be defined by Ñ (0) = 1,
Ñ (k) = (3nk + 2)Ñ (k−1). We first construct N (k)-periodic time changes F (k) of the
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solenoidal flow on S(k) = R/Ñ (k)Z such that V(0)(pS(k),S(0)(F
(k)
t (0))) = V(k)(t).

We first take F (0) to be just the solenoidal flow on S(0). Now define inductively

(165) wF (k+1)(t) = wF (k)(t)eρ
(k+1)(t)

for a suitable function ρ(k+1). Here it is enough to take ρ(k+1) = ln nk+1+1
nk

on

[0, (nk+1 +1)Ñ (k)], ρ(k+1) = ln 2nk+1+1
2nk+1

on [(nk+1 +1)Ñ (k) +ε, (3nk+1 +2)Ñ (k)−ε],
for suitably small ε, and such that

(166)

∫ (nk+1+1)Ñ(k)+ε

(nk+1+1)Ñ(k)

1

wF (k)(t)eρ
(k+1)(t)

dt =
2nk+1

2nk+1 + 1

∫ ε

0

1

wF (k)(t)
dt,

(167)

∫ (3nk+1+2)Ñ(k)

(3nk+1+2)Ñ(k)−ε

1

wF (k)(t)eρ
(k+1)(t)

dt =
2nk+1

2nk+1 + 1

∫ Ñ(k)

Ñk−ε

1

wF (k)(t)
dt.

Notice that by taking parameters growing sufficiently fast, we can take F (k+1) close
to the lift of F (k).

Let S be the projective limit of R/Ñ (k)Z, and let v : S → R be given by

v(x) = V(0)(pS,S(0)(x)). Let Ft : S → S be the projective limit of the F
(k)
t . The

base dynamics will be the time-one map F1 and the sampling function will be v.
By (163), for every k, if E ∈ Γ =

⋂
Γ(k),

(168) sup
1≤j≤N(k)

| sup
x

ln ‖A[F1, v](E, x, 0, j)‖ − sup
t

ln ‖A[V(k)
t ](E, 0, j))‖| ≤ 1

2k−1
,

and together with (164) we get, for E ∈ Γ

(169) sup
x

1

N (k+1)
ln ‖A[F1, v](E, x, 0, N (k+1))‖ ≤ 1

2k
+

1

N (k+1)2k
≤ 1

2k−1
,

so that the Lyapunov exponent (with respect to any F1-invariant measure) must
vanish over Γ.

To conclude, let us show that the flow F is weak mixing: This implies that the
discrete dynamics F1 is weak mixing as well, and since F is minimal and uniquely
ergodic, it also implies that F1 is minimal and uniquely ergodic, so that Γ is con-
tained in the essential support of the absolutely continuous spectrum for every x.
In order to do this, we notice that for 0 ≤ j ≤ nk+1 − 1

(170) pS(k+1),S(k)(F
(k+1)

jN(k) (t)) = F
(k)
j/nk+1

(pS(k+1),S(k)(t)),

as long as t ∈ [0, (nk+1+1)(1− j
nk+1

)Ñ (k)]. On the other hand, for 0 ≤ j ≤ 2nk+1−1

(171) pS(k+1),S(k)(F
(k+1)

jN(k) (t)) = F
(k)
j/2nk+1

(pS(k+1),S(k)(x)),

as long as t ∈ [(nk+1 + 1)Ñ (k) + 1, Ñ (k+1) − 2nk+1+1
2nk+1

jÑ (k) − 1].

The conclusion proceeds along the same line as in Lemma 4.4. Take a measurable
eigenfunction ψ taking values on the unit circle, associated to an eigenvalue θ 6= 0,
so that ψ ◦ Ft = e2πiθtψ. Taking conditional expectations, we obtain ψ(j) on S(j),
taking values on the closed unit disk, with limψ(j)(pS,S(j)(x)) = ψ(x) for almost

every x. We then conclude from (170) and (171) that θj
2nk+1

is close to an integer

for 1 ≤ j ≤ [nk+1/2]. This contradicts θ 6= 0. �
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Remark 6.5. Using Remark 6.4, we can ensure in the construction that

(172) C = sup
k

sup
E∈Γk

sup
t
d(u[V(k)

t ](E), i) <∞.

This implies that

(173) sup
k

sup
E∈Γk

sup
t

sup
j
‖A[V(k)

t ](E, 0, j)‖ ≤ eC ,

and by (168),

(174) sup
E∈Γ

sup
x

sup
j
‖A[F1, v](E, x, 0, j)‖ ≤ eC ,

so all eigenfunctions with energies in Γ are bounded.
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