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ABSTRACT. We discuss the recent proof of Cantor spectrum for the
almost Mathieu operator for all conjectured values of the parameters.

1. INTRODUCTION

The almost Mathieu operator (a.k.a. the Harper operator or the Hofs-
tadter model) is a Schrédinger operator on £2(Z),

(Hx0,0u)n = Unt1 + Up—1 + 2X cos 2m(0 + na)uy,,

where A, @, @ € R are parameters (the coupling, the frequency and the phase).
This model first appeared in the work of Peierls [21]. It arises in physics
literature as related, in two different ways, to a two-dimensional electron
subject to a perpendicular magnetic field [15, 23]. It plays a central role in
the Thouless et al theory of the integer quantum Hall effect [27]. The value
of X\ of most interest from the physics point of view is A = 1. It is called the
critical value as it separates two different behaviors as far as the nature of
the spectrum is concerned.

If a = g is rational, it is well known that the spectrum consists of the
union of ¢ intervals possibly touching at endpoints. In the case of irrational
« the spectrum (which then does not depend on ) has been conjectured for
a long time to be a Cantor set for all A # 0 [7]. To prove this conjecture
has been dubbed the Ten Martini problem by Barry Simon, after an offer of
Kac in 1981, see Problem 4 in [25].

In 1984 Bellissard and Simon [8] proved the conjecture for generic pairs
of (A, ). In 1987 Sinai [26] proved Cantor spectrum for a.e. « in the per-
turbative regime: for A = A\(«) sufficiently large or small. In 1989 Helffer-
Sjostrand proved Cantor spectrum for the critical value A = 1 and an explic-
itly defined generic set of a [16]. Most developments in the 90s were related
to the following observation. For o = %’ the spectrum of H) , ¢ can have at
most ¢ — 1 gaps. It turns out that all these gaps are open, except for the
middle one for even ¢ [20, 11]. Choi, Eliott, and Yui obtained in fact an
exponential lower bound on the size of the individual gaps from which they
deduced Cantor spectrum for Liouville (exponentially well approximated by
the rationals) « [11]. In 1994 Last, using certain estimates of Avron, van
Mouche and Simon [6], proved zero measure Cantor spectrum for a.e. « (for
an explicit set that intersects with but does not contain the set in [16]) and
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A =1 [18]. Just extending this result to the case of all (rather than a.e.) «
was considered a big challenge (see Problem 5 in[25]).

A major breakthrough came recently with an influx of ideas coming from
dynamical systems. Puig, using Aubry duality [1] and localization for 6 = 0
and A > 1 [13], proved Cantor spectrum for Diophantine @ and any non-
critical A [22]. At about the same time, Avila and Krikorian proved zero
measure Cantor spectrum for A = 1 and « satisfying a certain Diophantine
condition, therefore extending the result of Last to all irrational « [3]. The
solution of the Ten Martini problem as originally stated was finally given in

[2):

Main Theorem ([2]). The spectrum of the almost Mathieu operator is a
Cantor set for all irrational o and for all A # 0.

Here we present the broad lines of the argument of [2]. For a much more
detailed account of the history as well as of the physics background and
related developments see a recent review [19].

While the ten martini problem was solved, a stronger version of it, dubbed
by B. Simon the Dry Ten Martini problem is still open. The problem is to
prove that all the gaps prescribed by the gap labelling theorem are open.
This fact would be quite meaningful for the QHE related applications [4].
Dry ten martini was only established for Liouville « [11, 2] and for Diophan-
tine « in the perturbative regime [22], using a theorem of Eliasson [12].

1.1. Rough strategy. The history of the Ten Martini problem we de-
scribed shows the existence of a number of different approaches, applicable
on different parameter ranges.

Denote by ¥ , the union over 6 € R of the spectrum of H} , ¢ (recall that
the spectrum is actually #-independent if & € R\ Q). Due to the obvious
symmetry 3 o = —X_) o, We may assume that A > 0. Aubry duality gives
a much more interesting symmetry, which implies that 3, o = AXy-1 ,. The
critical coupling A = 1 separates two very distinct regimes. The transition
at A = 1 can be clearly seen by consideration of the Lyapunov exponent
L(E) = Ly (F), for which we have the following statement.

Theorem 1.1 ([9]). Let A >0, a € R\ Q. For every E € £y 4, Lyo(F) =
max{In\, 0}.

With respect to the frequency «, one can broadly distinguish two ap-
proaches, applicable depending on whether « is well approximated by ratio-
nals or not (the Liouville and the Diophantine cases):

(1) In the Liouvillian region, one can try to proceed by rational approx-
imation, exploiting the fact that a significant part of the behavior at
rational frequencies is accessible by calculation (this is a very special
property of the cosine potential).

(2) In the Diophantine region, one can attemp to solve two small divisor
problems that have been linked with Cantor spectrum.
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(a) Localization (for large coupling), whose relevance to Cantor
spectrum was shown in [22].

(b) Floquet reducibility (for small coupling), which is connected to
Cantor spectrum in [12], [22].

Although Aubry duality relates both problems for A # 1, it is important
to notice that the small divisor analysis is much more developed in the lo-
calization problem, where powerful non-perturbative methods are currently
available.

To decide whether a should be considered Liouville or Diophantine for
the Ten Martini problem, we introduce a parameter 5 = (a) € [0, o0]:

(1.1) B = limsup %,

n—»00 qn
where g—: are the rational approximations of a (obtained by the continued
fraction algorithm). As (8 grows, the Diophantine approach becomes less
and less efficient, until it ceases to work, while the opposite happens for the
Liouville approach.

As discussed before, those lines of attack lead to the solution of the
Ten Martini problem in a very large region of the parameters, which is
both generic and of full Lebesgue measure. However there is no reason
to expect that one could cover the whole parameter range by this Liou-
ville/Diophantine dichotomy. Actually our analysis seems to indicate the
existence of a critical range, 8 < |InA| < 283, where one is close enough
to the rationals to make the small divisor problems intractable (so that, in
particular, localization does not hold in the full range of phases for which it
holds for larger A), but not close enough so that one can borrow their gaps.

In order to go around the (seemingly) very real issues present in the crit-
ical range, we will use a somewhat convoluted argument which proceeds by
contradiction. The contradiction argument allows us to exploit the follow-
ing new idea: roughly, absence of Cantor spectrum is shown to imply much
better, irrealistically good estimates. Still, those “fictitious” estimates are
barely enough to cover the critical range of parameters, and we are forced
to push the more direct approaches close to their technical limits.

We will need to apply this trick both in the Liouvillian side and in the
Diophantine side. In the Liouvillian side, it implies improved continuity
estimates for the dependence of the spectrum on the frequency. In the Dio-
phantine side, it immediately solves the “non-commutative” part of Floquet
reducibility: what remains to do is to solve the cohomological equation. Un-
fortunately, this can not be done directly. Instead, what we pick up from
the (“soft”) analysis of the cohomological equation is used to complement
the (“hard”) analysis of localization.

In the following sections we will succesively describe the analytic exten-
sion trick, the Liouville estimates, the two aspects of the Diophantine side
(reducibility and localization), and we will conclude with some aspects of
the proof of localization.
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2. ANALYTIC EXTENSION

In Kotani theory, the complex analytic properties of Weyl’s m-functions
are used to describe the absolutely continuous component of the spectrum
of an ergodic Schrédinger operator. However, it can also be interpreted as
a theory about certain dynamical systems, cocycles.

We restrict to the case of the almost Mathieu operator. A formal solution
of Hy o 9gu = Eu, u € CZ, satisfies the equation

en (PR ) ()= (),

E —2\cos2mx —1
1 0
Sxe(@ + (n — 1)a)--- Sy g(0) becomes clear. Since Sy p are matrices in

SL(2,C), which has a natural action on C, (CCL Z) cz = %, this leads to

Defining Sy g(z) = , the importance of the products

the consideration of the dynamical system
(2.2) (o, Sam) :R/Z x C - R/Z x C
(z,w) = (z + o, S\ g5(z) - w),

which is the projective presentation of the almost Mathieu cocycle.

An invariant section for the cocycle (a, Sy g) is a function m : R/Z — C
such that Sy g(z)-m(z) = m(z+«a). The existence of a (sufficiently regular)
invariant section is of course a nice feature, as it in a sense means that the
cocycle does not see the whole complexity of the group SL(2,C): the cocycle
is conjugate to a cocycle in a simpler group (of triangular matrices). The
existence of two distinct invariant sections means that the simpler group is
isomorphic to an even simpler, abelian group (of diagonal matrices).

It turns out that the cocycle is well behaved when E belongs to the resol-
vent set C\ X o: it is hyperbolic, which in particular means the existence of
two continuous invariant sections. Moreover, the dependence of the invari-
ant sections on F is analytic. Kotani showed that the existence of an open
interval J in the spectrum where the Lyapunov exponent is zero allows one
to use the Schwarz reflection principle with respect to F, and to conclude
that the invariant sections can be analytically continued through J. Thus
for E € J, there are still two continuous invariant sections.

A crucial new idea is that those invariant sections are actually analytic
also in the other variable.

Theorem 2.1. Let 0 < A <1, a € R\Q. Let J € X 4 be an open interval.
For E € J, there exists an analytic map Bg : R/Z — SL(2,R) such that

(2.3) Bg(z + @) - Sy g(z) - Be(z)™! € SO(2,R),

that is, (o, Sx,g) is analytically conjugate to a cocycle of rotations. More-
over, (z,E) — Bg(z) is analytic for (z,E) € R/Z x J.
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The proof uses the analyticity of the almost Mathieu cocycle (o, Sy g)
coupled with an analytic extension (Hartogs) argument.

3. THE LIOUVILLIAN SIDE

The rational approximation argument centers around two estimates, on
the size of gaps for rational frequencies, and on the modulus of continuity
(in the Hausdorff topology) of the spectrum as a function of the frequency.

3.1. Gaps for rational approximants. The best effective estimate for

the size of gaps had been given in [11], which established that all gaps of

Y, 2 (except the central collapsed gap for ¢ even) have size at least C'(A) 9,
’q

where C'()) is some explicit constant (for instance, C(1) = 8). Such effective
constants are not good enough for our argument (for instance, it is important
to have C'(A) close to 1 when A is close to 1). On the other hand, we only
need asymptotic estimates, addressing rationals % approximating some given
irrational frequency for which we want to prove Cantor spectrum.

Theorem 3.1. Let a €e R\ Q, A > 0. For every e > 0, if% is close enough
to « then all open gaps of ¥, p have size at least e (IInAl+€)q/2,
q

It was pointed out to us by Bernard Helffer (during the Qmath9 confer-
ence) that this asymptotic estimate does not hold under the sole assumption
of ¢ — o0, as is demonstrated by the analysis of Helffer and Sjostrand, so it
is important to only consider approximations of a given irrational frequency.

The proof starts as in [11], which gives a global inequality relating all
bands in the spectrum. We then use the integrated density of states to get
a better (asymptotic) estimate on the position of bands in the spectrum.
Using the Thouless formula, we get an asymptotic estimate for the size of
gaps near a given frequency o and near a given energy E € X, , in terms
of the Lyapunov exponent L) ,(F). Theorem 1.1 then leads to the precise
estimate above.

3.2. Continuity of the spectrum. The best general result on continuity
of the spectrum was obtained in [6], 1/2-Hélder continuity. Coupled with the
gap estimate for rational approximants, we get the following contribution to
the Dry Ten Martini problem.

Theorem 3.2. If e # < X\ < € then all gaps of Yo are open.
q

Unfortunately this cannot be complemented by any Diophantine method
that in one way or another requires localization, as it would miss the param-
eters such that |In A\| = 8 > 0. Indeed, by the Gordon’s argument enhanced
by the Theorem 1.1, for any 6 operator H) , ¢ has no exponentially decaying
eigenfunctions for \ < e?.

Better estimates on continuity of the spectrum were obtained by [14] in
the Diophantine range, but these estimates get worse in the critical range
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and can not be used. What we do instead is a “fictitious” improvement
based on Theorem 2.1.

Theorem 3.3. Let a € R\ Q, A > 0. If J C int Xy, is a closed interval
then there exists C > 0 such that for every E € J, and for every o/ € R,
there ezists E' € ¥ o with |E — E'| < Cla — d/|.

This estimate, Lipschitz continuity, is obtained in the range 0 < A < 1
using Theorem 2.1 and a direct dynamical estimate on perturbations of
cocycles of rotations.

This result can be applied in an argument by contradiction:

Theorem 3.4. Ife 28 < X\ < e?# then Yo i85 a Cantor set.

4. THE DIOPHANTINE SIDE

The Diophantine side is ruled by small divisor considerations. Two tra-
ditional small divisor problems are associated to quasiperiodic Schrédinger
operators: localization for large coupling and Floquet reducibility for small
coupling. Those two problems are largely related by Aubry duality.

While originally both problems were attacked by perturbative methods
(very large coupling for localization and very small coupling for reducibility,
depending on specific Diophantine conditions), powerful non-perturbative
estimates are now available for the localization problem. For this reason,
all the effective “hard analysis” we will do will be concentrated in the lo-
calization problem. However, those estimates by themselves are insufficient.
We will need an additional soft analysis argument (again analytic extension),
carried out for the reducibility problem under the assumption of non-Cantor
spectrum, to improve (irrealistically) the localization results.

4.1. Reducibility. We say that (o, S) g) is reducible if it is analytically
conjugate to a constant cocycle, that is, there exists an analytic map B :
R/Z — SL(2,R) such that B(z + ) - Sy g(z) - B(z)™! is a constant A,.
An important idea is that (a, Sy g) is much more likely to be reducible
if one assumes that E' € int X, ,, 0 < A < 1. Indeed most of reducibility
is taken care by Theorem 2.1, which simplifies the problem to proving re-
ducibility for an analytic cocycle of rotations. This is a much easier task,
which reduces to consideration of the classical cohomological equation

(4.1) $(z) = Y(z +a) - P(z),
which can be analysed via Fourier series: one has an explicit formula for
the Fourier coefficients (k) = W&(k) The small divisors arise when
llge|r/z is small, where || - ||g/z denotes the distance to the nearest integer.
This easily takes care of the case 8 = 0, but for 8 > 0 the information
given by Theorem 2.1 is not quantitative enough to conclude. The analysis
of the cohomological equation gives still the following interesting qualitative
information.
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Theorem 4.1. Let « € R\ Q and let 0 < A < 1. Assume that 8 < co. Let
Ay be the set of E € Xy o such that (o, Sy g) is reducible. If Ay ,Nint 3, ,
has positive Lebesgue measure then Ay o has non-empty interior.

The proof of this theorem uses again ideas from analytic extension.

Let N = Ny 4o : R = [0,1] be the integrated density of states. One of the
key ideas of [22] is that if (a, Sy g) is reducible for some E € X, , such that
N(E) € aZ + Z then FE is the endpoint of an open gap. The argument is
particular to the cosine potential, and involves Aubry duality. It, in fact,
extends to the case of any analytic function such that the dual model (which
in general will be long-range) has simple spectrum.

Since an open subset of ¥ , must intersect {F € X, o, N(F) € aZ + Z},
we immediately obtain Cantor spectrum in the entire range of § = 0 just
from the reducibility considerations alone. Note that 8 = 0 is strictly
stronger than the Diophantine condition, and we did not use any local-
ization result. As noted above, this f = 0 result extends to quasiperiodic
potentials defined by analytic functions under the condition that the Lya-
punov exponent is zero on the spectrum ' and that the dual model has
simple spectrum (it is actually enough to require that spectral multiplicities
are nowhere dense).

For 0 < 8 < oo it follows similarly that the hypothesis of the previous
theorem must fail:

Corollary 4.2. Let a € R\ Q and let 0 < A < 1. If f < o0 then Ay, N
int Xy o has zero Lebesgue measure.

4.2. Localization and reducibility. Aubry duality gives the following
relation between reducibility and localization. If B € X, , is such that
N(E) ¢ oZ + Z then the following are equivalent:
(1) (@, S»E) is reducible,
(2) There exists § € R, such that 20 € £N(E) + 2aZ + 2Z and A 'E
is a localized eigenvalue (an eigenvalue for which the corresponding
eigenfunction exponentially decays) of Hy-1 , g

Remark 4.1. When N(E) € oZ + Z, (1) still implies (2), but it is not clear
that (2) implies (1) unless § = 0 (which covers the case treated in [22]).
This is not however the main reason for us to avoid treating directly the
case N(E) € aZ + Z.

Remark 4.2. The approach of [22] is to obtain a dense subset of {E €
Yo N(E) € aZ + Z} for which (o, Sy g) is reducible, for 0 < A < 1 and «
satisfying the Diophantine condition Ing,+1; = O(lng,), as a consequence of
localization for Hy-1,0 and Aubry duality. Such a localization result (for
0 = 0) is however not expected to hold in the critical range of «, see more
discussion in the next section.

IThis condition holds for all analytic functions for sufficiently small A ( in a non-
perturbative way) so that the result of [10] applies, thus by [9] L(E) is zero on the spectrum
for all irrational a.
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Thus proving localization of Hy-1 ,¢ for a large set of 6 allows one to
conclude reducibility of (o, Sy g) for a large set of E. Coupled with Corollary
4.2, we get the following criterium for Cantor spectrum.

Theorem 4.3. Let a € R\ Q, 0 < X < 1. Assume that 8 < oc. If Hy-144
displays localization for almost every 6 € R then Ly o (and hence Xy-1 ,) is
a Cantor set.

5. A LOCALIZATION RESULT

In order to prove the Main Theorem, it remains to obtain a localization
result that covers the pairs @« € R\ Q and A > 1 which could not be treated
by the Liouville method, namely the parameter region In A > 24.

In proving localization of H) ¢, two kinds of small divisors intervene,

(1) The usual ones for the cohomological equation, arising from g €
Z\ {0} for which ||ga||g/z is small,

(2) Small denominators coming from g € Z such that |20 + ga||g/z is
small.

Notice that for any given «, a simple Borel-Cantelli argument allows one
to obtain that for almost every 6 the small denominators of the second kind
satisfy polynomial lower bounds:

(1+¢)%

When 6 = 0, or more generally 20 € aZ + Z, which is the case linked to
Cantor spectrum in [22], the small divisors of the second type are exactly
the same as the first type.2 When 8 > 0, where the small denominators of
the first type can be exponentially small, # = 0 is thus much worse behaved
than almost every 8, leading to a smaller range where one should be able
to prove localization. More precisely, one expects that localization holds for
almost every 0 if and only if In XA > 8, and for § = 0 if and only if In A > 24.
Even with all the other tricks, this would leave out the parameters such that
InA=28>0.

In any case, the following localization result is good enough for our pur-
poses.

(5.1) 120 + qallr/z >

Theorem 5.1. Let o € R\ Q. Assume that In\ > %ﬁ. Then H)y 49
displays localization for almost every 6 € R.

This is the most technical result of [2]. We use the general setup of [13],
however our key technical procedure is quite different.

It is well known that to prove localization of H) , ¢ it suffices to prove that
all polynomially bounded solutions of H) o ¢¥ = EV decay exponentially.

2Actually there is an additional very small denominator, 0 of the second type, which
leads to special considerations, but is not in itself a show stopper.
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We will use the notation Gy, 4,)(7,y) for matrix elements of the Green’s
function (H — E)~! of the operator H) o, restricted to the interval [z, z9]
with zero boundary conditions at x; — 1 and zo + 1.

It can be checked easily that values of any formal solution ¥ of the equa-
tion H¥ = EV at a point z € I = [z1,x2] C Z can be reconstructed from
the boundary values via

(5.2) ¥U(z) = —Gr(z,21)¥(z1 — 1) — Gr(z, 22)¥(22 + 1).

The strategy is to find, for every large integer z, a large interval I =
[1, z2] C Z containing = such that both G(z,z;) and G(z,z2) are exponen-
tially small (in the length of I). Then, by using the “patching argument”
of multiscale analysis, we can prove that ¥(z) is exponentially small in |z|.
(The key property of ¥, that it is a generalized eigenfunction, is used to
control the boundary terms in the block-resolvent expansion.)

Fix m > 0. A point y € Z will be called (m, k)-regular if there exists an
interval [z1,z2], 2 = 1 + k — 1, containing y, such that

1
—k;1=1,2.

|G l21,0) (Y, i) | < e~™y=%l and dist(y, z;) > 0

We now have to prove that every z sufficiently large is (m, k)-regular for
appropriate m and k. The precise procedure to follow will depend strongly
on the position of z with respect to the sequence of denominators ¢, (we

assume that z > 0 for convenience). Let b, = max{qg/ 9, %qn,l}. Let n be
such that b, < z < b,4+1. We distinguish between the two cases:

(1) Resonant: meaning |z — £g,| < b, for some £ > 1 and
(2) Non-resonant: meaning |z — £g,| > by, for all £ > 0.

Theorem 5.1 is a consequence then of the following estimates:

Lemma 5.2. Assume that 0 satisfies (5.1). Suppose x is non-resonant. Let
s € NU{0} be the largest number such that sq,—1 < dist(z, {€qn}¢>0). Then
for any € > 0 for sufficiently large n, -
(1) Ifs>1andInX > 3, z is (InX — (1;;—?’; — €,25qn—1 — 1)-regular.
(2) If s =0 then =z is either (In X —¢,2[L52] — 1) or (In X —¢,2[L] — 1)
or (InX —¢,2g,_1 — 1)-regular.

Lemma 5.3. Let in addition In X > 19—6ﬁ. Then for sufficiently large n, every
In\

resonant x is (g5, 2qn — 1)-regular.

Each of those estimates is proved following a similar scheme, though the
proof of Lemma 5.3 needs additional bootstrapping from the proof of Lemma,
5.2. All small denominators considerations are entirely captured through the
following concept:

We will say that the set {01,...,0k11} is e-uniform if
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ass |z — cos 276y)| &
(5.3) max  max | | oo < e
(&

2€[—1,1] j=1,...,k+1 s 2m6; — cos 2mly)|

The uniformity of some specific sequences can then be used to show that
some y € Z is regular following the scheme of [13]. In this approach, the
goal is to find two non-intersecting intervals, I; around 0 and I around y, of
combined length |I1|+|I2| = k+1, such that we can establish the uniformity
of {6;} where 6; = 0 + (z + %)a, i=1,...,k+ 1, for z ranging through
LIUL.

The actual proof of uniformity depends on the careful estimates of trigono-
metric products along arithmetic progressions 6+ja. Since [ In|E—cos 2760|df =
—1In2 for any |E| < 1 such estimates are equivalent to the analysis of large
deviations in the appropriate ergodic theorem. A simple trigonometric ex-
pansion of (5.3) shows that uniformity involves equidistribution of the 6;
along with cumulative repulsion of £6;(mod 1)’s, and thus involves both
kinds of small divisors previously mentioned.
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