ON RIGIDITY OF CRITICAL CIRCLE MAPS

ARTUR AVILA

AbStract. We give examples of analytic critical circle maps which are not $C^{1+\alpha}$ rigid.

1. Introduction

A critical circle map is a C^{1} homeomorphism $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ with a unique critical point at 0 . Fix $d \geq 3$ odd and let Ω be the space of analytic critical circle maps such that the critical point has order d.

Yoccoz showed that if $f \in \Omega$ has irrational rotation number then f is topologically conjugate to a irrational rotation [Y]. Thus if $f, g \in \Omega$ have the same irrational rotation number then there exists a unique homeomorphism $h=h_{f, g}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ such that $h(0)=0$ and $h \circ f=g \circ h$. The following result was announced by Teplinsky and Khanin [TK].

Theorem 1.1. Let $f, g \in \Omega$ have the same irrational rotation number. Then h is C^{1}.
This theorem immediately provokes the question of whether one could promote h to $C^{1+\alpha}$ for some $\alpha>0$. This was known not to be possible if one assumes that f and g are merely C^{∞}, unless further hypothesis on the rotation number are made [FM1], [FM2]. The following result of Khmelev and Yampolski $[\mathrm{KY}]$ seemed to indicate that the analytic case could be different (the question of whether h is always $C^{1+\alpha}$ is explicitly posed in [KY]).

Theorem 1.2. Let $f, g \in \Omega$ have the same irrational rotation number. Then h is $C^{1+\alpha}$ at 0 for some $\alpha>0$, that is

$$
\begin{equation*}
h(x)=D h(0) x+O\left(|x|^{1+\alpha}\right) . \tag{1.1}
\end{equation*}
$$

Here we show:
Theorem A. There exists $f, g \in \Omega$ with the same irrational rotation number such that h is not $C^{1+\alpha}$ for any α.

Several other non-rigidity results in this line can be obtained by similar methods. For instance, analytic unimodal maps with essentially bounded combinatorics are not necessarily $C^{1+\alpha}$-rigid. In another direction, the parameter space of critical circle maps is not $C^{1+\alpha}$ rigid. We will not discuss those issues here, since the principle is always the same: two parabolic maps with different parabolic renormalizations produce, after unfolding, definite oscillations in arbitrarily small scales.

We have not tried to obtain any explicit arithmetic condition for non-rigidity. An heuristic argument, assuming that parabolic renormalization is not more than exponentially convergent, indicates that if the coefficients a_{n} in the continued fraction expansion of the rotation number do not satisfy $\ln a_{n}=O(n)$ then $C^{1+\alpha}$ rigidity should not hold.

Acknowledgements: I am indebted to M. Lyubich for asking me the question and to K. Khanin and M. Yampolski for convincing me to write this note.

[^0]
2. Perturbations of parabolic maps

Let Δ be the space of entire functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+1)=f(x)+1$, and which restrict to a homeomorphisms $\mathbb{R} \rightarrow \mathbb{R}$ with negative Schwarzian derivative

$$
\begin{equation*}
S f=\frac{D^{3} f}{D f}-\frac{3}{2}\left(\frac{D^{2} f}{D f}\right)^{2}<0 \tag{2.1}
\end{equation*}
$$

with critical points of order d at integer points (and no further critical points). We endow it with a complete metric dist, compatible with the natural topology of Δ. Maps in Δ can be seen as critical circle homeomorphisms in the natural way.

Let $\rho(f), f \in \Delta$ be the rotation number, $\rho(f)=\lim \frac{f^{n}(x)}{n}, x \in \mathbb{R}$. For $\alpha \in \mathbb{R}$, let Δ_{α} be the set of all f with $\rho(f)=\alpha$. If $\rho(f)=\frac{p}{q} \in \mathbb{Q}$, then $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ has a unique periodic orbit in $\left\{f^{i}(x)\right\}_{i=0}^{q}$, of period q which is non-repelling (by the negative Schwarzian derivative condition [MS]). Moreover, if $D f^{q}(x)=1$ we have necessarily $D^{2} f(q) \neq 0$.

We write $\Delta_{\frac{p}{q}}=\Delta_{\frac{p}{q},+} \cup \Delta_{\frac{p}{q},-} \cup \Delta_{\frac{p}{q}, 0}$, corresponding to the cases $(+) D f^{q}(x)=1$ and $D^{2} f^{q}(x)>0$, $(-) D f^{q}(x)=1$ and $D^{2} f^{q}(x)<0$, (0) $D f^{q}(x)<1$.

Let $f_{t}(x)=f(x)-t, t \in \mathbb{R}$. Then $\rho\left(f_{t}\right)$ is continuous non-increasing, and it is constant in a neighborhood of 0 if and only if $f \in \Delta_{\frac{p}{q}, 0}$ for some $\frac{p}{q} \in \mathbb{Q}$. If $f \in \Delta_{\frac{p}{q},+}$ then $\rho\left(f_{t}\right)$ is constant in $[0, \epsilon)$ for ϵ small. If $f \in \Delta_{\underline{p}},-$ then $\rho\left(f_{t}\right)$ is constant in $-(\epsilon, 0]$ for ϵ small.

Let T be the set of all C^{1} diffeomorphisms $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h(x+1)=h(x), h(0)=0$, endowed with the natural topology.

Theorem 2.1. Let $f_{0}, g_{0} \in \Delta_{\frac{p}{q}, \varepsilon}$, where $\frac{p}{q} \in \mathbb{Q}$ and $\varepsilon \in\{+,-\}$. Let K be a compact subset of T. Then there exists a trigonometric polynomial v, such that $D^{k} v(0)=0$ for $0 \leq k \leq d$, and sequences $\epsilon_{n}^{0}, \epsilon_{n}^{1}, \epsilon_{n}^{2} \rightarrow 0$ such that $f_{n}=f_{0}+\epsilon_{n}^{1}$ and $g_{n}=g_{0}+\epsilon_{n}^{0} v+\epsilon_{n}^{2}$ have the same irrational rotation number, and there exists no $h \in K$ such that $h \circ f_{n}=g_{n} \circ h$.

We will prove the result only in the case $\frac{p}{q}=0, \varepsilon=-$, the general case being analogous. We will need some results in parabolic renormalization, which we summarize in the next section.
2.1. Parabolic renormalization. Let Υ be the set of all C^{3} critical circle homeomorphisms f : $\mathbb{R} \rightarrow \mathbb{R}$, with a unique fixed point $p=p_{f} \in(-1,0)$, satisfying $D f(p)=1, D^{2} f(p)<0$.

Fix some $f_{0} \in \Upsilon$. The following estimates hold uniformly for maps f in a neighborhood of f_{0}.
We have $f^{n}(x) \rightarrow p$ and $f^{-n}(x) \rightarrow p+1$ if $x \in(p, p+1)$. Near p we have $f(p+h)=f(p)+$ $h+\frac{D^{2} f(p)}{2} h^{2}+O\left(h^{3}\right)$. It follows that for every $\epsilon>0, f^{n}(x)=p+\frac{2}{D^{2} f(p) n}+O\left(\frac{\ln n}{n^{2}}\right)$ and $f^{-n}(x)=$ $p+1-\frac{2}{D^{2} f(p) n}+O\left(\frac{\ln n}{n^{2}}\right)$ if $x \in[p+\epsilon, p+1-\epsilon]$.
Lemma 2.2. If $n>n_{0}(\epsilon)$ and $x \in[p+\epsilon, p+1-\epsilon]$ then $\left|\frac{(n+k)^{2}}{n^{2}} D f^{k}\left(f^{n}(x)\right)-1\right|<\epsilon$ for every $k \geq 0$.
Proof. We have $\ln D f^{k}\left(f^{n}(x)\right)=\sum_{j=n}^{n+k-1} \ln D f\left(f^{j}(x)\right)=\sum D^{2} f(p)\left(f^{j}(x)-p\right)+O\left(\left(f^{j}(x)-p\right)^{2}\right)=$ $-2 \sum_{j=n}^{n+k-1} \frac{1}{j}+O\left(\frac{\ln j}{j^{2}}\right)=-2 \ln \frac{n+k}{n}+o(1)$.

Let $f_{\epsilon}=f-\epsilon$.
Define $\Phi_{f, n, \epsilon,+}:(p, p+1) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\Phi_{f, n, \epsilon,+}(x)=-\frac{2 n^{2}}{D^{2} f(p)}\left(f_{\epsilon}^{n}(x)-f_{\epsilon}^{n}(0)\right) . \tag{2.2}
\end{equation*}
$$

Let $\Phi_{f, n,+}=\Phi_{f, n, 0,+}$.
Lemma 2.3. The sequence $\Phi_{f, n,+}$ converges C^{1} uniformly on compact sets to a C^{1}-homeomorphism $\Phi_{f,+}:(p, p+1) \rightarrow \mathbb{R}$ with critical points in $\left\{f^{k}(0)\right\}_{k \geq 0}$. Moreover $\Phi_{f,+}(f(x))=\Phi_{f,+}(x)-1$.

Proof. It follows from the previous lemma that $D \Phi_{f, n,+}$ converges uniformly on compacts, and indeed $\ln D \Phi_{f, n,+}(x)$ converges if x is not in $\left\{f^{k}(x)\right\}_{k \leq 0}$. Since $\Phi_{f, n,+}(0)=0$, the sequence $\Phi_{f, n,+}$ has a limit $\Phi_{f,+}$ which is C^{1}, monotonically increasing, and whose critical points are in $\left\{f^{k}(0)\right\}_{k \leq 0}$. Notice that $\Phi_{f, n,+}(f(x))-\Phi_{f, n,+}(x)=\frac{-2 n^{2}}{D^{2} f(p)}\left(f^{n+1}(x)-f^{n}(x)\right) \rightarrow 1$. This implies also that $\Phi_{f,+}$ is a homeomorphism.

Define $\Phi_{f, n, \epsilon,-}:(p, p+1) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\Phi_{f, n, \epsilon,-}(x)=-\frac{2 n^{2}}{D^{2} f_{\epsilon}(p)}\left(f_{\epsilon}^{-n}(x)-f_{\epsilon}^{-n}(0)\right) \tag{2.3}
\end{equation*}
$$

Let $\Phi_{f, n,-}=\Phi_{f, n, 0,-}$.
As before we have the following.
Lemma 2.4. The sequence $\Phi_{f, n,-}^{-1}$ converges C^{1} uniformly on compacts to a C^{1}-homeomorphism $\Phi_{f,-}^{-1}: \mathbb{R} \rightarrow(p, p+1)$ with critical values in $\left\{f^{k}(0)\right\}_{k<0}$. Moreover $\Phi_{f,-}(f(x))=\Phi_{f,-}(x)-1$.

The previous two lemmas imply easily the following.
Lemma 2.5. There exists $\epsilon(n)>0$ such that if $0<\epsilon_{n}<\epsilon(n)$ then $\Phi_{f, n, \epsilon_{n},+} \rightarrow \Phi_{f,+}$ and $\Phi_{f, n, \epsilon_{n},-}^{-1} \rightarrow$ $\Phi_{f,-}^{-1} C^{1}$ uniformly on compacts.

We define $R_{0} f=\Phi_{+} \circ \Phi_{-}^{-1}$. Then $R_{0} f$ is a C^{1} critical circle homeomorphism $\mathbb{R} \rightarrow \mathbb{R}$ with $R_{0} f(0)=0$.

Let $n \geq n_{0}, 0<\epsilon<\epsilon_{0}(n)$. Let $m=m(f, n, \epsilon)>0$ be the first moment such that $f_{\epsilon}^{n+m}(0) \in$ $-1+\left[f_{\epsilon}^{n+1}(0), f_{\epsilon}^{n}(0)\right)$. Let $c=c_{f, n, \epsilon}=f_{\epsilon}^{-m+n+1}(-1)$ be the critical point of f_{ϵ}^{m} in $\left(f_{\epsilon}^{n+1}(0), f_{\epsilon}^{n}(0)\right]$.

Let $F_{f, n, \epsilon}(x)=\frac{2 n^{2}}{D^{2} f(p)}\left(f_{\epsilon}^{m}\left(c+\frac{D^{2} f(p)}{2 n^{2}} x\right)-f_{\epsilon}^{m}(c)\right)$.
Let $\Psi_{f, n, \epsilon}(x)=\frac{2 n^{2}}{D^{2} f(p)}\left(f_{\epsilon}^{m-2 n-1}\left(c+\frac{D^{2} f(p)}{2 n^{2}} x\right)-f_{\epsilon}^{m-2 n-1}(c)\right)$.
Lemma 2.6. There exists $\epsilon(n)>0$ such that if $0<\epsilon_{n}<\epsilon(n)$ then $\Psi_{f, n, \epsilon_{n}} \rightarrow$ id C^{1} uniformly on compacts.

Proof. Since $\Psi(0)=0$, we only need to show that $D \Psi(x)$ is δ close to 1 for $|x|<C$, provided that $n>n_{0}$ and $0<\epsilon<\epsilon(n)$. This is equivalent to showing that $D f_{\epsilon}^{m-2 n-1}(x)$ is δ close to 1 when $|x-c|<\frac{D^{2} f(p)}{2 n^{2}} C$. We may replace this last condition by the weaker $x \in I$, where $I=\left[f_{\epsilon}^{k}(c), f_{\epsilon}^{-k}(c)\right]$, for k large depending on C. Then $|I|$ is of order $2 k / n^{2}$. Also, $f_{\epsilon}^{m-2 n-1}(I)=\left[f^{-n+k}(-1), f^{-n-k}(-1)\right]$ has size also about $2 k / n^{2}$. By the classical Schwartz estimate on distortion, $\ln \frac{D f(y)}{D f(x)}$ for $x, y \in I$ is at most $2 k$ times the total variation of $\ln D f_{\epsilon}$ in $\left[f_{\epsilon}^{-k}(c), f_{\epsilon}^{-n+k}(-1)\right]$. Since f is C^{3}, this goes to 0 as n goes to ∞. The result follows.

Theorem 2.7. There exists $\epsilon(n) \rightarrow 0$ such that if $0<\epsilon_{n}<\epsilon(n)$ then $F_{f, n, \epsilon_{n}}$ converges to $R_{0} f, C^{1}$ uniformly on compacts of \mathbb{R}.

Proof. Notice that

$$
\begin{align*}
F_{f, n, \epsilon}(x) & =\frac{2 n^{2}}{\left.D^{2} f(p)\right)}\left(f_{\epsilon}^{n+1}\left(f_{\epsilon}^{m-n-1}\left(c+\frac{D^{2} f(p)}{2 n^{2}} x\right)\right)-f_{\epsilon}^{n+1}(-1)\right) \tag{2.4}\\
& =\frac{n^{2}}{(n+1)^{2}} \Phi_{f, n+1, \epsilon,+}\left(\Phi_{f, n, \epsilon,-}^{-1}\left(\Psi_{f, n, \epsilon}(x)\right)\right)
\end{align*}
$$

The result follows.

Lemma 2.8. Let $q \in(f(0), 0)$. There exists $\kappa>0$ with the following property. Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be C^{3} such that $v(x+1)=v(x), D^{k} v(0)=D^{k} v(p)=0,0 \leq k \leq 2, f+\epsilon v$ is a critical circle map for ϵ small, $\left|D^{3} v(x)\right|<\kappa, x \in[p, p+1] \backslash[q-\kappa, q+\kappa], v(q)=1$. Then for ϵ sufficiently small and $g=f+\epsilon v, R_{0} g \neq R_{0} f$.
Proof. We first note that a simple induction shows that for $x \in\left(f^{2}(0), f(0)\right),\left|g^{n}(x)-f^{n}(x)\right| \leq$ $C \epsilon \kappa n^{-2} \ln n$. This easily implies the bound $\left|\ln D \Phi_{g,+}(x)-\ln D \Phi_{f,+}(x)\right|<C \epsilon \kappa$. Since $g(0)=f(0)$ and $\Phi_{g,+}(g(0))=\Phi_{f,+}(f(0))=1$, we have $\left|\Phi_{g,+}(g(q))-\Phi_{f,+}(g(q))\right| \leq C \epsilon \kappa$.

Similar estimates yield $\left|\Phi_{g,-}(q)-\Phi_{f,-}(q)\right| \leq C \epsilon \kappa$.
We have $\left|\Phi_{g,+}(g(q))-\Phi_{f,+}(f(q))\right| \geq \epsilon D \Phi_{f,+}(q)-C \epsilon \kappa>\frac{D \Phi_{f,+}(q)}{2} \epsilon$. This gives $\mid \Phi_{g,+}(q)-$ $\Phi_{f,+}(q) \left\lvert\,>\frac{D \Phi_{f,+}(q)}{2} \epsilon\right.$.

Since $R_{0} g\left(\Phi_{g,-}(q)\right)=\Phi_{g,+}(q)$, if $R_{0} g=R_{0} f$ we would have $\left|\Phi_{g,+}(q)-\Phi_{f,+}(q)\right|=\mid R_{0} f\left(\Phi_{g,-}(q)\right)-$ $\Phi_{f,+}(q) \mid \leq D R_{0} f\left(\Phi_{f,-}(q)\right) C \epsilon \kappa$, a contradiction.
Lemma 2.9. Let $f, g \in \Upsilon$, and let $\epsilon_{n}, \delta_{n} \rightarrow 0$ be such that there exists a C^{1} diffeomorphism $h_{n} \in T$ such that $h_{n} \circ f_{\epsilon_{n}}=g_{\delta_{n}} \circ h_{n}$. Assume that the h_{n} converge in the C^{1} topology to a C^{1} diffeomorphism h. Then $R_{0} f=R_{0} g$.
Proof. It is easy to see that $D h(p)=D^{2} g(h(p)) / D^{2} f(p)$. Let $c_{n}=c_{f, n, \epsilon_{n}}$. Then

$$
\begin{align*}
F_{f, n, \epsilon_{n}}\left(x_{n}\right) & =\frac{2 n^{2}}{D^{2} f(p)}\left(f_{\epsilon_{n}}^{m}\left(c_{n}+\frac{D^{2} f(p)}{2 n^{2}} x_{n}\right)-f_{\epsilon_{n}}^{m}\left(c_{n}\right)\right) \tag{2.5}\\
& =\frac{2 n^{2}}{D^{2} g(h(p))}\left(h_{n} \circ f_{\epsilon_{n}}^{m}\left(c_{n}+\frac{D^{2} f(p)}{2 n^{2}} x\right)-h_{n}\left(f_{\epsilon_{n}}^{m}\left(c_{n}\right)\right)\right)+o(1) \\
& =\frac{2 n^{2}}{D^{2} g(h(p))}\left(g_{\delta_{n}}^{m} \circ h_{n}\left(c_{n}+\frac{D^{2} f(p)}{2 n^{2}} x\right)-h_{n}\left(f_{\epsilon_{n}}^{m}\left(c_{n}\right)\right)\right)+o(1) \\
& =\frac{2}{D^{2} g(h(p))}\left(g_{\delta_{n}}^{m}\left(h_{n}\left(c_{n}\right)+\frac{D^{2} g\left(h_{n}(p)\right)}{2 n^{2}} x\right)-h_{n}\left(f_{\epsilon_{n}}^{m}\left(c_{n}\right)\right)\right)+o(1) \\
& =F_{g, n, \delta_{n}}(x)+o(1) .
\end{align*}
$$

The result follows.
2.2. Proof of Theorem 2.1. Recall that we are restricting to the case $\frac{p}{q}=0, \varepsilon=-$ for simplicity. Let v be a trigonometrical polynomial satisfying the bounds given in Lemma 2.8, and also the condition $D^{k} v(0)=0,0 \leq k \leq d$.

If $R_{0} f_{0} \neq R_{0} g_{0}$, let $\epsilon_{n}^{0}=0$. Otherwise, let $\epsilon_{n}^{0}>0$ be any sequence converging to 0 . Fix n large. Then $R_{0} f_{0} \neq R_{0}\left(g_{0}+\epsilon_{n}^{0}\right)$. Let $f=f_{0}, g=g_{0}+\epsilon_{n}^{0}$. Let ϵ_{s}, δ_{s} be sequences converging to 0 such that $f+\epsilon_{s}$ and $g+\delta_{s}$ have the same irrational rotation number. By Lemma 2.9, for large s there exists no $h \in K$ such that $h \circ\left(f+\epsilon_{s}\right)=\left(g+\delta_{s}\right) \circ h$. We take $\epsilon_{n}^{1}=\epsilon_{s}$ and $\epsilon_{n}^{2}=\delta_{s}$ for such an s.

3. Proof of Theorem A

The set of $h \in T$ which are $C^{1+\alpha}$ for some $\alpha>0$ can be written as a union of compact sets K_{n}, $K_{n+1} \supset K_{n}$.
Lemma 3.1. Let $f, g \in \Delta, \rho(f)=\rho(g) \in \mathbb{R} \backslash \mathbb{Q}$. For every $\epsilon>0, k>0$, there exists $\hat{f}, \hat{g} \in \Delta$ such that $\rho(\hat{f})=\rho(\hat{g}) \in \mathbb{R} \backslash \mathbb{Q}$, $\operatorname{dist}(f, \hat{f})$, $\operatorname{dist}(g, \hat{g})<\epsilon$, and if $\operatorname{dist}(\tilde{f}, \hat{f})$, $\operatorname{dist}(\tilde{g}, g)<\delta$ then $k!\rho(\tilde{f}) \notin \mathbb{Z}$, and there exists no $h \in K_{k}$ such that $h \circ \tilde{f}=\tilde{g} \circ h$.
Proof. Let $f_{0}, g_{0} \in \Delta_{\frac{p}{q}, \varepsilon}$ be such that $\operatorname{dist}\left(f, f_{0}\right), \operatorname{dist}\left(g, g_{0}\right)<\frac{\epsilon}{2}$. Let $K=K_{k}$, and let $\hat{f}=f_{n}$, $\hat{g}=g_{n}$ be as in Theorem 2.1, for n large. Then $\operatorname{dist}(f, \hat{f}), \operatorname{dist}(g, \hat{g})<\epsilon$. If the result does not hold
then there exists $\tilde{f}_{n} \rightarrow \hat{f}, \tilde{g}_{n} \rightarrow \hat{g}$ and $h_{n} \in K$ such that $h_{n} \circ \tilde{f}_{n}=\tilde{g}_{n} \circ h_{n}$. But then $h \circ \hat{f}=\hat{g} \circ h$ for some $h \in K$, contradiction.

Let us define a sequence $f_{n}, g_{n} \in \Delta, \epsilon_{n}>0$ by induction as follows. Take $f_{0}, g_{0} \in \Delta$ arbitrary with $\rho\left(f_{0}\right)=\rho\left(g_{0}\right)$ irrational, let $\epsilon_{0}=\frac{1}{10}$.

If $f_{n}, g_{n}, \epsilon_{n}$ are defined, take $f=f_{n}, g=g_{n}, \epsilon=\epsilon_{n} / 10, k=n$ in the previous lemma, and set $\epsilon_{n+1}=\min \left\{\frac{\epsilon_{n}}{10}, \delta\right\}, f_{n+1}=\hat{f}, g_{n+1}=\hat{g}$. Let $f=\lim f_{n}, g=\lim g_{n}$. It follows that $\rho(f)=\rho(g)$ is irrational and $h_{f, g} \notin K_{n}, n \geq 0$, so $h_{f, g}$ is $\operatorname{not} C^{1+\alpha}$.

References

[FM1] de Faria, Edson; de Melo, Welington Rigidity of critical circle mappings. I. J. Eur. Math. Soc. (JEMS) 1 (1999), no. 4, 339-392.
[FM2] de Faria, Edson; de Melo, Welington Rigidity of critical circle mappings. II. J. Amer. Math. Soc. 13 (2000), no. 2, 343-370.
[KY] Khmelev, D.; Yampolski, M. Rigidity problem for analytic critical circle maps. Preprint (www.arXiv.org).
[MS] de Melo, Welington; van Strien, Sebastian One-dimensional dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 25. Springer-Verlag, Berlin, 1993. xiv+605 pp.
[TK] Teplinskii, A. Yu.; Khanin, K. M. Rigidity for circle diffeomorphisms with singularities. Uspekhi Mat. Nauk 59 (2004), no. 2(356), 137-160.
[Y] Yoccoz, Jean-Christophe Il n'y a pas de contre-exemple de Denjoy analytique. C. R. Acad. Sci. Paris Sr. I Math. 298 (1984), no. 7, 141-144.

Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie-Boite courrier 188, 75252-Paris Cedex 05, France

E-mail address: artur@ccr.jussieu.fr

[^0]: Date: May 13, 2005.

