ON RIGIDITY OF CRITICAL CIRCLE MAPS

ARTUR AVILA

ABSTRACT. We give examples of analytic critical circle maps which are not $C^{1+\alpha}$ rigid.

1. INTRODUCTION

A critical circle map is a C^1 homeomorphism $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ with a unique critical point at 0. Fix $d \geq 3$ odd and let Ω be the space of analytic critical circle maps such that the critical point has order d.

Yoccoz showed that if $f \in \Omega$ has irrational rotation number then f is topologically conjugate to a irrational rotation [Y]. Thus if $f, g \in \Omega$ have the same irrational rotation number then there exists a unique homeomorphism $h = h_{f,g} : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ such that h(0) = 0 and $h \circ f = g \circ h$. The following result was announced by Teplinsky and Khanin [TK].

Theorem 1.1. Let $f, g \in \Omega$ have the same irrational rotation number. Then h is C^1 .

This theorem immediately provokes the question of whether one could promote h to $C^{1+\alpha}$ for some $\alpha > 0$. This was known not to be possible if one assumes that f and g are merely C^{∞} , unless further hypothesis on the rotation number are made [FM1], [FM2]. The following result of Khmelev and Yampolski [KY] seemed to indicate that the analytic case could be different (the question of whether h is always $C^{1+\alpha}$ is explicitly posed in [KY]).

Theorem 1.2. Let $f, g \in \Omega$ have the same irrational rotation number. Then h is $C^{1+\alpha}$ at 0 for some $\alpha > 0$, that is

(1.1)
$$h(x) = Dh(0)x + O(|x|^{1+\alpha}).$$

Here we show:

Theorem A. There exists $f, g \in \Omega$ with the same irrational rotation number such that h is not $C^{1+\alpha}$ for any α .

Several other non-rigidity results in this line can be obtained by similar methods. For instance, analytic unimodal maps with essentially bounded combinatorics are not necessarily $C^{1+\alpha}$ -rigid. In another direction, the parameter space of critical circle maps is not $C^{1+\alpha}$ rigid. We will not discuss those issues here, since the principle is always the same: two parabolic maps with different parabolic renormalizations produce, after unfolding, definite oscillations in arbitrarily small scales.

We have not tried to obtain any explicit arithmetic condition for non-rigidity. An heuristic argument, assuming that parabolic renormalization is not more than exponentially convergent, indicates that if the coefficients a_n in the continued fraction expansion of the rotation number do not satisfy $\ln a_n = O(n)$ then $C^{1+\alpha}$ rigidity should not hold.

Acknowledgements: I am indebted to M. Lyubich for asking me the question and to K. Khanin and M. Yampolski for convincing me to write this note.

Date: May 13, 2005.

ARTUR AVILA

2. Perturbations of parabolic maps

Let Δ be the space of entire functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x+1) = f(x)+1, and which restrict to a homeomorphisms $\mathbb{R} \to \mathbb{R}$ with negative Schwarzian derivative

(2.1)
$$Sf = \frac{D^3f}{Df} - \frac{3}{2} \left(\frac{D^2f}{Df}\right)^2 < 0$$

with critical points of order d at integer points (and no further critical points). We endow it with a complete metric dist, compatible with the natural topology of Δ . Maps in Δ can be seen as critical circle homeomorphisms in the natural way.

Let $\rho(f)$, $f \in \Delta$ be the rotation number, $\rho(f) = \lim_{n \to \infty} \frac{f^n(x)}{n}$, $x \in \mathbb{R}$. For $\alpha \in \mathbb{R}$, let Δ_{α} be the set of all f with $\rho(f) = \alpha$. If $\rho(f) = \frac{p}{q} \in \mathbb{Q}$, then $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ has a unique periodic orbit in $\{f^i(x)\}_{i=0}^q$, of period q which is non-repelling (by the negative Schwarzian derivative condition [MS]). Moreover, if $Df^q(x) = 1$ we have necessarily $D^2f(q) \neq 0$.

We write $\Delta_{\frac{p}{q}} = \Delta_{\frac{p}{q},+} \cup \Delta_{\frac{p}{q},-} \cup \Delta_{\frac{p}{q},0}$, corresponding to the cases $(+) Df^q(x) = 1$ and $D^2 f^q(x) > 0$, (-) $Df^q(x) = 1$ and $D^2 f^q(x) < 0$, (0) $Df^q(x) < 1$.

Let $f_t(x) = f(x) - t$, $t \in \mathbb{R}$. Then $\rho(f_t)$ is continuous non-increasing, and it is constant in a neighborhood of 0 if and only if $f \in \Delta_{\frac{p}{q},0}$ for some $\frac{p}{q} \in \mathbb{Q}$. If $f \in \Delta_{\frac{p}{q},+}$ then $\rho(f_t)$ is constant in $[0,\epsilon)$ for ϵ small. If $f \in \Delta_{\frac{p}{q},-}$ then $\rho(f_t)$ is constant in $-(\epsilon,0)$ for ϵ small.

Let T be the set of all C^1 diffeomorphisms $h : \mathbb{R} \to \mathbb{R}$ with h(x+1) = h(x), h(0) = 0, endowed with the natural topology.

Theorem 2.1. Let $f_0, g_0 \in \Delta_{\frac{p}{q},\varepsilon}$, where $\frac{p}{q} \in \mathbb{Q}$ and $\varepsilon \in \{+,-\}$. Let K be a compact subset of T. Then there exists a trigonometric polynomial v, such that $D^k v(0) = 0$ for $0 \le k \le d$, and sequences $\epsilon_n^0, \epsilon_n^1, \epsilon_n^2 \to 0$ such that $f_n = f_0 + \epsilon_n^1$ and $g_n = g_0 + \epsilon_n^0 v + \epsilon_n^2$ have the same irrational rotation number, and there exists no $h \in K$ such that $h \circ f_n = g_n \circ h$.

We will prove the result only in the case $\frac{p}{q} = 0$, $\varepsilon = -$, the general case being analogous. We will need some results in parabolic renormalization, which we summarize in the next section.

2.1. **Parabolic renormalization.** Let Υ be the set of all C^3 critical circle homeomorphisms $f : \mathbb{R} \to \mathbb{R}$, with a unique fixed point $p = p_f \in (-1, 0)$, satisfying Df(p) = 1, $D^2f(p) < 0$.

Fix some $f_0 \in \Upsilon$. The following estimates hold uniformly for maps f in a neighborhood of f_0 . We have $f^n(x) \to p$ and $f^{-n}(x) \to p+1$ if $x \in (p, p+1)$. Near p we have $f(p+h) = f(p) + h + \frac{D^2 f(p)}{2} h^2 + O(h^3)$. It follows that for every $\epsilon > 0$, $f^n(x) = p + \frac{2}{D^2 f(p)n} + O(\frac{\ln n}{n^2})$ and $f^{-n}(x) = p + 1 - \frac{2}{D^2 f(p)n} + O(\frac{\ln n}{n^2})$ if $x \in [p + \epsilon, p + 1 - \epsilon]$.

 $\textbf{Lemma 2.2. If } n > n_0(\epsilon) \ and \ x \in [p+\epsilon, p+1-\epsilon] \ then \ |\frac{(n+k)^2}{n^2} Df^k(f^n(x)) - 1| < \epsilon \ for \ every \ k \ge 0.$

Proof. We have
$$\ln Df^k(f^n(x)) = \sum_{j=n}^{n+k-1} \ln Df(f^j(x)) = \sum D^2 f(p)(f^j(x)-p) + O((f^j(x)-p)^2) = -2\sum_{j=n}^{n+k-1} \frac{1}{j} + O(\frac{\ln j}{j^2}) = -2\ln \frac{n+k}{n} + o(1).$$

Let
$$f_{\epsilon} = f - \epsilon$$
.
Define $\Phi_{f,n,\epsilon,+} : (p, p+1) \to \mathbb{R}$ by

(2.2)
$$\Phi_{f,n,\epsilon,+}(x) = -\frac{2n^2}{D^2 f(p)} (f_{\epsilon}^n(x) - f_{\epsilon}^n(0)).$$

Let $\Phi_{f,n,+} = \Phi_{f,n,0,+}$.

Lemma 2.3. The sequence $\Phi_{f,n,+}$ converges C^1 uniformly on compact sets to a C^1 -homeomorphism $\Phi_{f,+}: (p, p+1) \to \mathbb{R}$ with critical points in $\{f^k(0)\}_{k\geq 0}$. Moreover $\Phi_{f,+}(f(x)) = \Phi_{f,+}(x) - 1$.

Proof. It follows from the previous lemma that $D\Phi_{f,n,+}$ converges uniformly on compacts, and indeed $\ln D\Phi_{f,n,+}(x)$ converges if x is not in $\{f^k(x)\}_{k\leq 0}$. Since $\Phi_{f,n,+}(0) = 0$, the sequence $\Phi_{f,n,+}(x) = 0$. has a limit $\Phi_{f,+}$ which is C^1 , monotonically increasing, and whose critical points are in $\{f^k(0)\}_{k\leq 0}$. Notice that $\Phi_{f,n,+}(f(x)) - \Phi_{f,n,+}(x) = \frac{-2n^2}{D^2 f(p)} (f^{n+1}(x) - f^n(x)) \to 1$. This implies also that $\Phi_{f,+}(x) = \frac{-2n^2}{D^2 f(p)} (f^{n+1}(x) - f^n(x)) \to 1$. is a homeomorphism. \square

Define $\Phi_{f,n,\epsilon,-}: (p,p+1) \to \mathbb{R}$ by

(2.3)
$$\Phi_{f,n,\epsilon,-}(x) = -\frac{2n^2}{D^2 f_{\epsilon}(p)} (f_{\epsilon}^{-n}(x) - f_{\epsilon}^{-n}(0))$$

Let $\Phi_{f,n,-} = \Phi_{f,n,0,-}$. As before we have the following.

Lemma 2.4. The sequence $\Phi_{f,n,-}^{-1}$ converges C^1 uniformly on compacts to a C^1 -homeomorphism $\Phi_{f,-}^{-1}: \mathbb{R} \to (p, p+1)$ with critical values in $\{f^k(0)\}_{k<0}$. Moreover $\Phi_{f,-}(f(x)) = \Phi_{f,-}(x) - 1$.

The previous two lemmas imply easily the following.

Lemma 2.5. There exists $\epsilon(n) > 0$ such that if $0 < \epsilon_n < \epsilon(n)$ then $\Phi_{f,n,\epsilon_n,+} \to \Phi_{f,+}$ and $\Phi_{f,n,\epsilon_n,-}^{-1} \to \Phi_{f,+}$ $\Phi_{f,-}^{-1}$ C¹ uniformly on compacts.

We define $R_0 f = \Phi_+ \circ \Phi_-^{-1}$. Then $R_0 f$ is a C^1 critical circle homeomorphism $\mathbb{R} \to \mathbb{R}$ with $R_0 f(0) = 0.$

Let $n \ge n_0$, $0 < \epsilon < \epsilon_0(n)$. Let $m = m(f, n, \epsilon) > 0$ be the first moment such that $f_{\epsilon}^{n+m}(0) \in -1 + [f_{\epsilon}^{n+1}(0), f_{\epsilon}^n(0)]$. Let $c = c_{f,n,\epsilon} = f_{\epsilon}^{-m+n+1}(-1)$ be the critical point of f_{ϵ}^m in $(f_{\epsilon}^{n+1}(0), f_{\epsilon}^n(0)]$. Let $F_{f,n,\epsilon}(x) = \frac{2n^2}{D^2 f(p)} (f_{\epsilon}^m (c + \frac{D^2 f(p)}{2n^2} x) - f_{\epsilon}^m (c))$. Let $\Psi_{f,n,\epsilon}(x) = \frac{2n^2}{D^2 f(p)} (f_{\epsilon}^{m-2n-1}(c + \frac{D^2 f(p)}{2n^2} x) - f_{\epsilon}^{m-2n-1}(c))$.

Lemma 2.6. There exists $\epsilon(n) > 0$ such that if $0 < \epsilon_n < \epsilon(n)$ then $\Psi_{f,n,\epsilon_n} \to \mathrm{id} C^1$ uniformly on compacts.

Proof. Since $\Psi(0) = 0$, we only need to show that $D\Psi(x)$ is δ close to 1 for |x| < C, provided that $n > n_0$ and $0 < \epsilon < \epsilon(n)$. This is equivalent to showing that $Df_{\epsilon}^{m-2n-1}(x)$ is δ close to 1 when $|x-c| < \frac{D^2 f(p)}{2n^2} C$. We may replace this last condition by the weaker $x \in I$, where $I = [f_{\epsilon}^k(c), f_{\epsilon}^{-k}(c)]$, for k large depending on C. Then |I| is of order $2k/n^2$. Also, $f_{\epsilon}^{m-2n-1}(I) = [f^{-n+k}(-1), f^{-n-k}(-1)]$ has size also about $2k/n^2$. By the classical Schwartz estimate on distortion, $\ln \frac{Df(y)}{Df(x)}$ for $x, y \in I$ is at most 2k times the total variation of $\ln Df_{\epsilon}$ in $[f_{\epsilon}^{-k}(c), f_{\epsilon}^{-n+k}(-1)]$. Since f is C^3 , this goes to 0 as n goes to ∞ . The result follows.

Theorem 2.7. There exists $\epsilon(n) \to 0$ such that if $0 < \epsilon_n < \epsilon(n)$ then F_{f,n,ϵ_n} converges to $R_0 f, C^1$ uniformly on compacts of \mathbb{R} .

Proof. Notice that

(2.4)
$$F_{f,n,\epsilon}(x) = \frac{2n^2}{D^2 f(p)} (f_{\epsilon}^{n+1}(f_{\epsilon}^{m-n-1}(c + \frac{D^2 f(p)}{2n^2}x)) - f_{\epsilon}^{n+1}(-1)) \\ = \frac{n^2}{(n+1)^2} \Phi_{f,n+1,\epsilon,+}(\Phi_{f,n,\epsilon,-}^{-1}(\Psi_{f,n,\epsilon}(x))).$$

The result follows.

Lemma 2.8. Let $q \in (f(0), 0)$. There exists $\kappa > 0$ with the following property. Let $v : \mathbb{R} \to \mathbb{R}$ be C^3 such that v(x+1) = v(x), $D^k v(0) = D^k v(p) = 0$, $0 \le k \le 2$, $f + \epsilon v$ is a critical circle map for ϵ small, $|D^3v(x)| < \kappa, x \in [p, p+1] \setminus [q-\kappa, q+\kappa], v(q) = 1$. Then for ϵ sufficiently small and $g = f + \epsilon v, R_0 g \neq R_0 f.$

Proof. We first note that a simple induction shows that for $x \in (f^2(0), f(0)), |g^n(x) - f^n(x)| \leq 1$ $C\epsilon\kappa n^{-2}\ln n$. This easily implies the bound $|\ln D\Phi_{q,+}(x) - \ln D\Phi_{f,+}(x)| < C\epsilon\kappa$. Since g(0) = f(0)and $\Phi_{g,+}(g(0)) = \Phi_{f,+}(f(0)) = 1$, we have $|\Phi_{g,+}(g(q)) - \Phi_{f,+}(g(q))| \le C\epsilon\kappa$. Similar estimates yield $|\Phi_{g,-}(q) - \Phi_{f,-}(q)| \le C\epsilon\kappa$.

We have $|\Phi_{g,+}(g(q)) - \Phi_{f,+}(f(q))| \geq \epsilon D \Phi_{f,+}(q) - C \epsilon \kappa > \frac{D \Phi_{f,+}(q)}{2} \epsilon$. This gives $|\Phi_{g,+}(q) - C \epsilon \kappa > \frac{D \Phi_{f,+}(q)}{2} \epsilon$.

 $\begin{aligned} \Phi_{f,+}(q)| &> \frac{D\Phi_{f,+}(q)}{2}\epsilon.\\ \text{Since } R_0g(\Phi_{g,-}(q)) &= \Phi_{g,+}(q), \text{ if } R_0g = R_0f \text{ we would have } |\Phi_{g,+}(q) - \Phi_{f,+}(q)| = |R_0f(\Phi_{g,-}(q)) - P_{g,+}(q)| \end{aligned}$ $|\Phi_{f,+}(q)| \leq DR_0 f(\Phi_{f,-}(q))C\epsilon\kappa$, a contradiction.

Lemma 2.9. Let $f, g \in \Upsilon$, and let $\epsilon_n, \delta_n \to 0$ be such that there exists a C^1 diffeomorphism $h_n \in T$ such that $h_n \circ f_{\epsilon_n} = g_{\delta_n} \circ h_n$. Assume that the h_n converge in the C^1 topology to a C^1 diffeomorphism h. Then $R_0 f = R_0 g$.

Proof. It is easy to see that $Dh(p) = D^2g(h(p))/D^2f(p)$. Let $c_n = c_{f,n,\epsilon_n}$. Then

2 2

$$(2.5) F_{f,n,\epsilon_n}(x_n) = \frac{2n^2}{D^2 f(p)} (f_{\epsilon_n}^m(c_n + \frac{D^2 f(p)}{2n^2} x_n) - f_{\epsilon_n}^m(c_n))
= \frac{2n^2}{D^2 g(h(p))} (h_n \circ f_{\epsilon_n}^m(c_n + \frac{D^2 f(p)}{2n^2} x) - h_n(f_{\epsilon_n}^m(c_n))) + o(1)
= \frac{2n^2}{D^2 g(h(p))} (g_{\delta_n}^m \circ h_n(c_n + \frac{D^2 f(p)}{2n^2} x) - h_n(f_{\epsilon_n}^m(c_n))) + o(1)
= \frac{2}{D^2 g(h(p))} (g_{\delta_n}^m(h_n(c_n) + \frac{D^2 g(h_n(p))}{2n^2} x) - h_n(f_{\epsilon_n}^m(c_n))) + o(1)
= F_{g,n,\delta_n}(x) + o(1).$$

The result follows.

2.2. Proof of Theorem 2.1. Recall that we are restricting to the case $\frac{p}{q} = 0$, $\varepsilon = -$ for simplicity. Let v be a trigonometrical polynomial satisfying the bounds given in Lemma 2.8, and also the condition $D^k v(0) = 0, \ 0 \le k \le d.$

If $R_0 f_0 \neq R_0 g_0$, let $\epsilon_n^0 = 0$. Otherwise, let $\epsilon_n^0 > 0$ be any sequence converging to 0. Fix n large. Then $R_0 f_0 \neq R_0 (g_0 + \epsilon_n^0)$. Let $f = f_0$, $g = g_0 + \epsilon_n^0$. Let ϵ_s , δ_s be sequences converging to 0 such that $f + \epsilon_s$ and $g + \delta_s$ have the same irrational rotation number. By Lemma 2.9, for large s there exists no $h \in K$ such that $h \circ (f + \epsilon_s) = (g + \delta_s) \circ h$. We take $\epsilon_n^1 = \epsilon_s$ and $\epsilon_n^2 = \delta_s$ for such an s.

3. Proof of Theorem A

The set of $h \in T$ which are $C^{1+\alpha}$ for some $\alpha > 0$ can be written as a union of compact sets K_n , $K_{n+1} \supset K_n.$

Lemma 3.1. Let $f, g \in \Delta$, $\rho(f) = \rho(g) \in \mathbb{R} \setminus \mathbb{Q}$. For every $\epsilon > 0$, k > 0, there exists $\hat{f}, \hat{g} \in \Delta$ such that $\rho(\hat{f}) = \rho(\hat{g}) \in \mathbb{R} \setminus \mathbb{Q}$, $\operatorname{dist}(f, \hat{f}), \operatorname{dist}(g, \hat{g}) < \epsilon$, and if $\operatorname{dist}(\tilde{f}, \hat{f}), \operatorname{dist}(\tilde{g}, g) < \delta$ then $k! \rho(\tilde{f}) \notin \mathbb{Z}$, and there exists no $h \in K_k$ such that $h \circ \tilde{f} = \tilde{g} \circ h$.

Proof. Let $f_0, g_0 \in \Delta_{\frac{p}{q}, \varepsilon}$ be such that $\operatorname{dist}(f, f_0), \operatorname{dist}(g, g_0) < \frac{\epsilon}{2}$. Let $K = K_k$, and let $\hat{f} = f_n$, $\hat{g} = g_n$ be as in Theorem 2.1, for n large. Then $\operatorname{dist}(f, \hat{f}), \operatorname{dist}(g, \hat{g}) < \epsilon$. If the result does not hold

then there exists $\tilde{f}_n \to \hat{f}$, $\tilde{g}_n \to \hat{g}$ and $h_n \in K$ such that $h_n \circ \tilde{f}_n = \tilde{g}_n \circ h_n$. But then $h \circ \hat{f} = \hat{g} \circ h$ for some $h \in K$, contradiction.

Let us define a sequence $f_n, g_n \in \Delta$, $\epsilon_n > 0$ by induction as follows. Take $f_0, g_0 \in \Delta$ arbitrary with $\rho(f_0) = \rho(g_0)$ irrational, let $\epsilon_0 = \frac{1}{10}$. If f_n, g_n, ϵ_n are defined, take $f = f_n, g = g_n, \epsilon = \epsilon_n/10, k = n$ in the previous lemma, and set

If f_n, g_n, ϵ_n are defined, take $f = f_n$, $g = g_n$, $\epsilon = \epsilon_n/10$, k = n in the previous lemma, and set $\epsilon_{n+1} = \min\{\frac{\epsilon_n}{10}, \delta\}$, $f_{n+1} = \hat{f}$, $g_{n+1} = \hat{g}$. Let $f = \lim_{n \to \infty} f_n$, $g = \lim_{n \to \infty} g_n$. It follows that $\rho(f) = \rho(g)$ is irrational and $h_{f,g} \notin K_n$, $n \ge 0$, so $h_{f,g}$ is not $C^{1+\alpha}$.

References

- [FM1] de Faria, Edson; de Melo, Welington Rigidity of critical circle mappings. I. J. Eur. Math. Soc. (JEMS) 1 (1999), no. 4, 339–392.
- [FM2] de Faria, Edson; de Melo, Welington Rigidity of critical circle mappings. II. J. Amer. Math. Soc. 13 (2000), no. 2, 343–370.
- [KY] Khmelev, D.; Yampolski, M. Rigidity problem for analytic critical circle maps. Preprint (www.arXiv.org).
- [MS] de Melo, Welington; van Strien, Sebastian One-dimensional dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 25. Springer-Verlag, Berlin, 1993. xiv+605 pp.
- [TK] Teplinskii, A. Yu.; Khanin, K. M. Rigidity for circle diffeomorphisms with singularities. Uspekhi Mat. Nauk 59 (2004), no. 2(356), 137–160.
- [Y] Yoccoz, Jean-Christophe II n'y a pas de contre-exemple de Denjoy analytique. C. R. Acad. Sci. Paris Sr. I Math. 298 (1984), no. 7, 141–144.

Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie–Boite courrier 188, 75252–Paris Cedex 05, France

E-mail address: artur@ccr.jussieu.fr