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1. Introduction

Here we consider one-frequency analytic SL(2,R) cocycles, that is, linear skew-
products over an irrational rotation x 7→ x+α of the circle R/Z which have the form
(α,A) : (x,w) 7→ (x+ α,A(x) · w) with A ∈ Cω(R/Z,SL(2,R)). Projectivizing the
second coordinate, a one-frequency cocycle can be seen as a map of the two-torus.
From the dynamical point of view, interest in the class of one-frequency cocycles is
largely motivated by the presence of sufficient complexity to allow for both KAM
and nonuniformly hyperbolic types of behavior [H], yet in a setting where one may
hope to investigate the natural issues that arise (dynamics of typical parameters,
the phase-transition between regimes,...), due to the availability of very effective
analytical tools. (See §1.3 for further, non-dynamical, motivation.)
Nonuniform hyperbolicity. The iterates of the cocycle have the form (α,A)n =
(nα,An) with An(x) = A(x + (n − 1)α) · · ·A(x), and the Lyapunov exponent is
defined by

(1.1) L = lim
n→∞

1

n

∫
ln ‖An(x)‖dx.

We say that (α,A) is uniformly hyperbolic if the cocycle iterates grow exponentially
uniformly on x ∈ R/Z (see [Yoc]). Uniform hyperbolicity is robust (it corresponds
to an open set of cocycles) and easily analyzed. Nonuniformly hyperbolic cocycles
are, by definition, those which have a positive Lyapunov exponent but are not uni-
formly hyperbolic: the corresponding dynamics on the two-torus is quite intrincate
and may display such features as “recurrent critical points” similar to chaotic mul-
timodal maps [Y], [Bj]. The theory of nonuniform hyperbolicity is quite developed,
through the works of Bourgain, Goldstein, Jitomirskaya and Schlag [BG], [GS1],
[BJ1], [GS2], [GS3].
KAM behavior. If A(x) is a constant elliptic matrix, the cocycle dynamics on the
two-torus is a quasiperiodic motion. The KAM Theorem shows that this behavior
tends to persist for many (large measure set of parameters) perturbations [DS],
[H]. But perturbations may also become uniformly hyperbolic (as resonances lead
to formation of “Arnold tongues” in parameter space). More interestingly, certain
oscillating behavior may arise (from the coexistence of infinitely many strong reso-
nances) for a topologically large set of perturbations in the complement of uniform
hyperbolicity [E].
Global theory. Since neither KAM nor nonuniformly hyperbolic behavior tells
the whole story about one-frequency cocycles (after excluding the easy uniformly
hyperbolic ones), it is natural to try to incorporate both as parts of a “global
theory”, and recent breakthroughs in parameter analysis led to a concrete such
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program [A2], [A3]. In it, cocycles which are not uniformly hyperbolic are classified
in three regimes:

(1) Supercritical, or nonuniformly hyperbolic,
(2) Subcritical, if the cocycle iterates ‖An(z)‖ are uniformly subexponentially

bounded through some strip {|=z| < ε},
(3) Critical otherwise.

A key point of this classification is that (in the complement of uniform hyperbol-
icity) both supercriticality and subcriticality are stable (respectively, by [BJ1] and
[A2]), while criticality is unstable (it is the boundary of supercriticality, see [A3]).
Moreover, in [A3] it is shown that criticality is “negligible” in the sense that it does
not appear at all in typical one-parameter families (this is quite convenient for the
theory since very little is known about the dynamics of critical cocycles, apart that
they are rare). Naturally, one still is left with the problem of describing the stable
regimes. This is not a problem with supercriticality, which is after all a new name
for an old concept with a very well developed theory, as mentioned above. Subcrit-
icality on the other hand, is a relatively new concept, which was first suggested to
be relevant in 2006 (see [AJ2]).
The Almost Reducibility Conjecture. In fact, [AJ2] basically proposed that
the well developed theory of cocycles close to constant ([E], [BJ2], [AJ2], [AFK]),
can be applied to all subcritical cocycles, by the application of suitable coordinate
changes. Recall that in the cocycle context the natural notion of coordinate change
is given by a conjugacy (x,w) 7→ (x,B(x) ·w) with B : R/Z→ PSL(2,R) analytic,
which takes (α,A) to (α,A′) with A′(x) = B(x + α)A(x)B(x)−1. Let us say that
(α,A) is almost reducible if there exist ε > 0 and a sequence of analytic maps
B(n) : R/Z → PSL(2,R), admitting holomorphic extensions to the common strip
{|=z| < ε} such that B(n)(z+α)A(z)B(n)(z)−1 converges to a constant uniformly in
{|=z| < ε} (the B(n) themselves are allowed to diverge). Essentially by definition,
the concept of almost reducibility prescribes a domain of applicability of “local
theories” of cocycles close to constant (this includes whatever can be achieved by
KAM techniques). The basic hope expressed by [AJ2] can be thus expressed in the
form of the Almost Reducibility Conjecture (ARC): subcriticality implies almost
reducibility.

Our first main result establishes a generic version of the ARC. Let us say that

α ∈ RrQ is exponentially Liouville if lim sup ln qn+1

qn
> 0, where qn is the sequence

of denominators of continued fraction approximants.

Theorem 1.1. If α ∈ RrQ is exponentially Liouville, then any subcritical cocycle
(α,A) is almost reducible.

Remark 1.1. We should mention that the results of this paper (obtained in 2006-
2007), precede the results of [A2] and [A3] (obtained in 2008-2009), and (being at
the time the only evidence for the ARC), played a large role in motivating those
works. On the other hand, we have recently established the ARC for almost every
frequency (by very different methods, in particular making use of [A2]).

The proof of Theorem 1.1 depends on the very precise understanding of the
behavior of the complexification of the cocycle for rational approximations. Partic-
ularly, we would like to highlight the novel application in dynamics of one complex
variable results such as the famous Corona Theorem of Carleson [C].
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1.1. Almost reducibility near constants. Besides the global considerations
above, Theorem 1.1 has an important consequence for the local theory of cocy-
cles close to constant. Indeed, a most basic question is whether effective control
of the dynamics can be achieved for all one-frequency cocycles close to constant,
despite the fact that usual KAM techniques involve positive measure restrictions
on parameters to avoid the effects of resonances. One most significative advance in
this direction was the progress from “positive measure” to “full measure” under-
standing, achieved through non-KAM methods, the localization-duality technique
used in [BJ2], [AJ3]. However, this technique seems to breakdown for generic fre-
quencies. The new approach developed in this paper perfectly complements this
previous work, leading to the long-sought:

Corollary 1.2. Any one-frequency cocycle close to constant is almost reducible.

Our results also allow us to conclude unrestricted stability of almost reducibility,
a result of much theoretical significance, since it allows for the clean delimitation
of sets of parameters with “close to constant” behavior:

Corollary 1.3. Almost reducibility is stable, in the sense that it defines an open
set in (RrQ)× Cω(R/Z,SL(2,R)).

From a more practical point of view, Corollary 1.2 naturally raises the question
of whether one really does have a good understanding of almost reducible cocy-
cles, especially for frequencies falling outside the scope of the previously developed
techniques. It turns out that we do get very precise estimates for the coordinate
changes involved, which allows for the a very effective analysis by periodic shad-
owing, a theme which we will further explore in the second paper in this series
(in connection with the absolutely continuity of spectral measures of one-frequency
Schrödinger operators, see §1.3). In the remaining of this introduction, we will
exhibit the applicability of our results in addressing a few other natural questions.

1.2. Rotations reducibility. Let us now specialize to the case of cocycles (α,A)
with A homotopic to a constant, so that the corresponding dynamics in the two-
torus is isotopic to the identity. Then (see [H], [JM]), (α,A) has a well defined
rotation vector, which describes the drift (modulo 1) of the dynamics in the universal
cover of the two-torus. The drift in the first coordinate is clearly α, while the drift
in the second coordinate is called the fibered rotation number. The fibered rotation
number is called exactly resonant if it belongs to Z ⊕ αZ.1 Uniformly hyperbolic
cocycles have exactly resonant fibered rotation numbers [JM].

We say that (α,A) is reducible if it is analytically conjugate to a constant. If this
constant is elliptic, the dynamics is quasiperiodic. As it turns out, non-ellipticity
may only arise if the fibered rotation number is exactly resonant.

If α is very well approximated by rational numbers, reducibility is very rare,
even for the simplest cocycles, with values in one-parameter subgroups. Indeed,
for such cocycles, reducibility involves the solution of the cohomological equation,
which has well known small divisor obstructions. This should not prevent us to try
to put cocycles in a simpler form, such as diagonal cocycles, or cocycles of rotations.
Indeed, it is well known that uniformly hyperbolic cocycles are “diagonal reducible”.

1Notice that our definition of the fibered rotation number is twice the most commonly used

in the litterature. This is because we define the two-torus dynamics by interpreting the second
coordinate as a projective coordinate, instead of taking it as the normalized angle in R2.
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More recently, [AFK] showed that cocycles near constant are rotations reducible for
a positive measure set of parameters, independently of α. More precisely [AFK],
Theorem 1.3, shows that there exists an explicit full measure set of “non-resonant”
fibered rotation numbersNR(α) such that if the fibered rotation number ρ of (α,A)
belongs to NR(α) then (α,A) is rotations reducible (i.e., it is conjugated to (α,A′)
where A′ takes values in SO(2,R)), provided A is sufficiently close to constant,
depending on ρ.

Due to the dependence of the closeness quantifier on ρ, this result corresponds
to positive measure, but not full measure, results in parameter space. However, for
an almost reducible cocycle, the closeness quantifier may be improved arbitrarily
by conjugation. Thus it is not surprising that it is possible to show that any
almost reducible cocycle (α,A) with fibered rotation number in NR(α) is rotations
reducible. There is a caveat in this argument, since conjugacy may change the
fibered rotation number by an element of Z ⊕ αZ, if the change of coordinates is
not isotopic to a constant. However, it turns out that almost reducibility implies
“almost reducibility with changes of coordinates isotopic to a constant”, for cocycles
that are not uniformly hyperbolic:2

Theorem 1.4. If (α,A) is almost reducible and not uniformly hyperbolic, then there
exist ε′ > 0, a sequence B(n) : R/Z → SL(2,R) with bounded analytic extensions
to {|=z| < ε′} and a rotation R∗ ∈ SO(2,R), such that B(n) is homotopic to a
constant and

(1.2) lim
n→∞

sup
|=z|<ε′

‖B(n)(z + α)A(z)B(n)(z)−1 −R∗‖ = 0.

Thus we conclude:

Corollary 1.5 (Rotations reducibility under a full measure condition). If (α,A)
is sufficiently close to a constant, or more generally, if it is almost reducible, and
its fibered rotation number belongs to NR(α), then (α,A) is rotations reducible.

1.3. One-frequency Schrödinger operators. The main non-dynamical motiva-
tion to study SL(2,R) cocycles comes from its applications to the theory of an
important class of one-dimensional Schrödinger operators.

A one-frequency Schrödinger operator is a bounded self-adjoint opeator H =
Hα,v,θ on `2(Z) of the form

(1.3) (Hu)n = un+1 + un−1 + v(θ + nα)un,

where α ∈ R r Q (the frequency), v ∈ Cω(R/Z,R) (the potential) and θ ∈ R/Z
(the phase) are all important parameters.

The analysis of one-frequency Schrödinger operators is intimately connected to
that of a particular family of one-frequency cocycles, with the special form

(1.4) A(x) = A(E−v)(x) =

(
E − v(x) −1

1 0

)
,

where E ∈ R (the energy) is a parameter: Indeed, a formal solution of the eigen-

value equation Hu = Eu satisfies

(
un
un−1

)
= An(θ)

(
u0
u−1

)
. One basic connection

2For uniformly hyperbolic cocycles, there is an obvious obstruction, since diagonal cocycles
have fibered rotation number 0.
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between dynamics and spectral theory is that an energy E is in the spectrum of
Hα,v,θ if and only if (α,A(E−v)) is not uniformly hyperbolic.

One-frequency Schrödinger operators are particularly interesting for reasons that
mirror our early dynamical considerations: It is a class that allows for two very
distinct behaviors, transport and localization (roughly corresponding to KAM and
nonuniformly hyperbolic dynamics). Accordingly, much of the theory of SL(2,R)
cocycles has been in fact developed having in mind the Schrödinger applications.

Key information about the spectral theory of the Schrödinger operator comes
from understanding the Lebesgue decomposition of the spectral measures into abso-
lutely continuous, singular continuous, and atomic (pure point) components. Par-
ticularly, the absolutely continuous (ac) part is associated with the strongest trans-
port properties (ballistic motion).

A fundamental result ([LS], [K]) is that the ac part of spectral measures is
supported in the set {L(E) = 0} of energies for which the cocycle (α,A(E−v)) has
zero Lyapunov exponent (in other words, the ac part gives zero weight to {L > 0}).
However, {L = 0} may also support non-ac spectrum (this is the case of the so-
called critical almost Mathieu operator [AK]). This raises the question of what is the
exact dynamical counterpart of absolutely continuous spectrum. One of our goals in
this work is to establish that the counterpart is precisely almost reducibility. This
has the important theoretical consequence of the stability of absolutely continuous
spectrum (in view of Corollary 1.3). Especially, it follows that ac spectrum lives in
an open set “separate” from singular spectrum.

Establishing the link between absolutely continuous spectrum and almost re-
ducibility is the main result in the second part of this series [A4], and it involves
a considerable amount of spectral theory preparation (this is the reason we have
split the presentation). However, here we will still be able to conclude the following
version for almost every phase.

Corollary 1.6. For any α ∈ RrQ, v ∈ Cω(R/Z,R), and for almost every θ ∈ R/Z,
the ac (respectively, singular) component of any spectral measure of (1.3) gives full
(respectively, zero) weight to the set of almost reducible energies.

Corollary 1.7. If α ∈ RrQ and the potential v ∈ Cω(R/Z,R) is close to constant,
then for almost every θ ∈ RrQ, the spectral measures of (1.3) are ac.

This result is closely related to a regularity result about another important object
in the spectral theory of (1.3), the integrated density of states (i.d.s.). The i.d.s.
N : R→ [0, 1] is the asymptotic distribution of eigenvalues of large block restrictions
of (1.3), and it is a continuous non-decreasing function onto [0, 1]. As it turns out,
the i.d.s. is directly related to the fibered rotation number [AS]: 1 − N(E) is
a determination of the fibered rotation number of (α,A(E−v)). It is known that
the i.d.s. is Lipschitz at any energy for which the cocycle (α,A(E−v)) is rotations
reducible (see, e.g., the proof of [AJ1], Theorem 6.1). By Corollary 1.5, the image
under N of the set of almost reducible energies at which the i.d.s. is not Lipschitz
has zero Lebesgue measure (it is contained in the complement of NR(α)). Thus
we conclude:

Corollary 1.8. The restriction of the i.d.s. of (1.3) to the open set of almost
reducible energies is absolutely continuous. In particular, if the potential v ∈
Cω(R/Z,R) is close to constant then the whole i.d.s. is absolutely continuous.
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2. Rational approximation

Let Cωδ (R, ∗), ∗ = R,SL(2,R), ..., be the space of bounded analytic functions with
values in ∗ which admit a bounded analytic extension to the strip {|=z| < δ}, with
the norm ‖a‖ε = sup|=z|<δ |a(z)|. We let Cωδ (R/Z, ∗) ⊂ Cωδ (R, ∗) be the subspace

of 1-periodic functions, with the same norm. Let Rθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
.

Theorem 1.1 will be obtained as a consequence of an estimate for periodic cocycles
with large period.

Theorem 2.1. For every 0 < ε < ε0 there exists C > 0 such that if δ1 > 0
is sufficiently small, then for every p/q ∈ Q with q sufficiently large, if A ∈
Cωε0(R/Z,SL(2,R)) is such that

(2.1) max
0≤k≤q

ln ‖Ak‖ε0 ≤ δ1q, with Ak(x) = A(x+ (k − 1)p/q) · · ·A(x),

then there exist B ∈ Cωε (R/Z,PSL(2,R)) and a rotation or diagonal matrix L∗ ∈
SL(2,R) such that ‖B‖ε ≤ eCδ1q, and ‖B(z + p/q)A(z)B(z)−1 − L∗‖ε ≤ e−δ1q.

Proof of Theorem 1.1. Let (α,A) be subcritical. By definition, there exists ε0 > 0
such that

(2.2) lim
n→∞

sup
|=z|<ε0

1

n
ln ‖A(z + (n− 1)α) · · ·A(z)‖ = 0.

Thus for every δ > 0, there exists n ≥ 1 such that

(2.3) sup
0≤k≤n

sup
|=z|<ε0

‖A(z + (k − 1)α) · · ·A(z)‖ ≤ eδn.

We may assume that ε0 is chosen so that A extends holomorphically to a band
{|=z| < ε′0} for some ε′0 > ε0. In particular, if q ≥ n and p/q is close to α, then

(2.4) sup
0≤k≤q

‖Ak‖ε0 ≤ e2δq, with Ak(x) = A(x+ (k − 1)p/q) · · ·A(x),

which implies (2.1) with δ1 = 2δ.
Assume now that α is exponentially Liouville. Then there exists δ′ > 0 such

that we may choose p/q arbitrarily close to α and satisfying |α − p
q | < e−δ

′q. Fix

0 < ε′ < ε < ε0 and let C be as in Theorem 2.1. Selecting 0 < δ1 <
1

10C δ
′ and

letting B and L∗ be as in Theorem 2.1, we get

‖B(z + α)A(z)B(z)−1 − L∗‖ε′(2.5)

≤ ‖B(z + p/q)A(z)B(z)−1 − L∗‖ε + ‖A‖ε‖B‖ε|α−
p

q
|‖∂B‖ε′

≤ ‖B(z + p/q)A(z)B(z)−1 − L∗‖ε + ‖A‖ε‖B‖2εC(ε, ε′)|α− p

q
|

≤ e−δ1q + C(ε, ε′)e−δ
′q/2 ≤ 2e−δ1q.

Since q can be taken arbitrarily large, the result follows. �
The analysis of periodic cocycles will be carried out in the next two sections.

Indeed, we can actually obtain much more information than what is described
in Theorem 2.1. For further applications (see [A4]), we will need such stronger
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estimates, but only in a particular case (which is not the hardest to prove). Below,

we use the notation φ̂k for the coefficients in the Fourier series of a function φ, thus

φ(x) =
∑
φ̂ke

2πikx.

Theorem 2.2. For every 0 < ε < ε0 there exist δ2 > 0 and C > 0 such that
if δ1 > 0 is sufficiently small, then for every p/q ∈ Q with q sufficiently large, if
A ∈ Cωε0(R/Z,SL(2,R)) is such that (2.1) holds and t = trAq satisfies |t̂0| < 2 and

|2 − |t̂0|| ≥ e−δ1q then there exists B ∈ Cωε (R/Z,PSL(2,R)) and θ ∈ Cωε (R/Z,R)

such that θ is 1/q-periodic, ‖θ − θ̂0‖ε ≤ e−δ2q, ‖B‖ε ≤ eCδ1q, and

(2.6) B(z + p/q)A(z)B(z)−1 =


Rθ(z), if |t̂0| < 2,(
eθ(z) 0

0 e−θ(z)

)
, if |t̂0| > 2.

The starting observation in our analysis of periodic cocycles is that the trace
function t = trAq is 1/q-periodic, since Aq(x+p/q) is conjugate to Aq(x) in SL(2,R)
(by A(x)). Assuming that ‖Aq(x)‖ is under subexponential control in a given band,
this implies that t actually oscillates exponentially little in a smaller band. Indeed,
a general 1/q periodic function φ ∈ Cωε0(R/Z,C) has only non-vanishing Fourier
coefficients at frequencies multiple of q, so that

(2.7) ‖φ− φ̂0‖ε ≤ ‖φ‖ε0
∑

k∈Zr{0}

e−2π|k|q(ε0−ε), 0 < ε < ε0,

so for large q (depending on ε and ε0) we have

(2.8) ‖φ− φ̂0‖ε ≤ 3e−2π(ε0−ε)q‖φ‖ε0 .
Notice that, while its trace is under very good control, the matrix Aq(x) itself

is still allowed to oscillate a lot. Much of our analysis will center around the
dependence of the eigendirections of Aq(x) (which is particularly complicated in

the case, complementary to the one consider in Theorem 2.2, where |t̂0| is close to
2, due to the possible development of singularities) through a complex band, and
will need a number of estimates on holomorphic functions of one-complex variable.

3. Proof of Theorem 2.2

3.1. Preliminary estimates.

Lemma 3.1. Let P (x) =

(
a(x) b(x)
c(x) d(x)

)
with a, b, c, d ∈ Cωε0(R/Z,C). Assume that

detP is identically vanishing and δ ≤ ‖P (z)‖ ≤ 1 through {|=z| < ε0}. Then there
exists u ∈ Cωε (R/Z,C2) such that P (z)u(z) = 0 and C−1δC ≤ ‖u(z)‖ ≤ 1 through
{|=z| < ε}. Here C = C(ε0, ε).

Proof. If c or d vanishes identically, the result is obvious. Indeed, if c vanishes
identically, for instance, then either a vanishes identically (and u = (1, 0) will do)
or d vanishes identically (and u = (−b, a) will do).

Let us assume that both c and d are not identically vanishing. Define a mero-

morphic function (not identically ∞) φ(x) = a(x)
b(x) = c(x)

d(x) . All estimates below are

for |=x| < ε, and C = C(ε0, ε).
If 1/4 < |φ(x)| < 1 then |Dφ(x)| ≤ C/δ. Thus the C−1δ-neighborhood of

φ({|=x| = ε}) intersects {1/2 < |κ| < 3/4} in a set of κ of Lebesgue measure at
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most 1/10. This implies that there exists |κ| < 3/4 such that |φ(x) − κ| > C−1δ
for every x with |=x| = ε, and such that for every y with |=y| < ε and φ(y) = κ we

have |Dφ(y)| > C−1. Up to replacing P by P

(
1 −κ
−κ 1

)
, we may suppose that

κ = 0. In particular, the zeros of φ are simple. Let us estimate the number of zeros
of φ in |=x| < ε.

If φ(x) = 0, then either for ψ0 = a and ψ1 = c or ψ0 = b and ψ1 = d
we have |Dψ0(x)| > C−1δ, |ψ1(x)| > C−1δ. This implies that we can cover
the zeros of φ in {|=x| < ε} with disjoint disks D of radius C−1δ, such that
maxψ=a,b infx∈∂D |ψ(x)| > C−1δ2. The zeros (of a or b) in such disks persist trun-
cation of the Fourier series keeping frequencies at most −C ln δ, hence φ has at
most −C ln δ zeros in |=x| < ε.

Let p(z) =
∏N
s=1(z− zs) where zs = e2πiθs and θs, 1 ≤ s ≤ N are the zeros of φ.

Let u1(θ) = p(e2πiθ), and let u2(x) = u1(x)/φ(x). Since the zeros of φ are simple,

u1 and u2 are bounded holomorphic functions in |=x| < ε. Let λ =

∥∥∥∥(u1u2
)∥∥∥∥

ε

. We

claim that u = λ−1
(
−u2
u1

)
has the desired properties.

Clearly −au2+bu1 = u2(−a+bφ) = 0 and similarly −cu2+du1 = 0, so that Pu =
0. We also have ‖u‖ε = 1. We need to show that C−1δC ≤ max{‖u1(x)‖, ‖u2(x))‖} ≤
Cδ−C in |=x| < ε.

Since the number N of zeros of φ in |=x| < ε is bounded by −C ln δ, we have
|u1(x)| ≤ Cδ−C in |=x| < ε, and since |φ(x)| > C−1δ in |=x| = ε, we also have
|u2(x)| ≤ Cδ−C in |=x| < ε. This gives the upper estimate.

To conclude, let us show that a(x)/u1(x) ≤ C−1δC and c(x)/u1(x) ≤ C−1δC for
|=x| < ε. This implies the lower estimate, since (a, b) and (c, d) are multiples of
(u1, u2) and ‖P (x)‖ ≥ δ.

Since a(x)/u1(x) and c(x)/u1(x) are holomorphic in |=x| < ε0 and ‖P (x)‖ ≤ 1
in |=x| < ε0, it is enough to show that u1(x) ≥ Cδ−C for |=x| = ε0. But clearly
|u1(x)| ≥ |e∓2πε− e∓2πε0 |N if ±=x = ε0, where N < −C ln δ is the number of zeros
of φ in |=x| < ε. The result follows. �

Lemma 3.2. For every 0 < ε3 < ε2, there exists δ > 0 and C > 0 such if δ1 is
sufficiently small and p/q ∈ Q with q sufficiently large, then the following property

holds. Let µ ∈ Cωε2(R/Z,C), and let µk =
∏k−1
j=0 µ(x+jp/q). Assume that ‖µk‖ε2 ≤

eδ1q, 1 ≤ k ≤ q and that ‖µ−1q ‖ε2 ≤ eδ1q. Then there exist ψ, θ ∈ Cωε3(R/Z,C) such
that

(3.1) µ(z) = e2πiθ(z)
e2πiψ(z+p/q)

e2πiψ(z)

and ‖ψ‖ε3 ≤ Cδ1q, ln ‖θ − θ̂0‖ε3 ≤ −δq and θ is 1/q-periodic. Moreover,

(1) If |µ(x)| = 1 for every x ∈ R, then =ψ(x) = 0 for every x ∈ R,
(2) If µ(x) ∈ R for every x ∈ R, then <ψ(x) = 0 for every x ∈ R.

Proof. Fix ε3 < ε′3 < ε′2 < ε2. Let µ(x) = e2πi(dx+φ(x)), where φ ∈ Cωε′2(R/Z,C).

Then µq(x) = e2πi(dqx)+φ̃(x) with φ̃ ∈ Cωε′2(R/Z,C). Let λ be the average of µq over

R/Z. Since µq is 1/q-periodic and ‖µq‖ε2 ≤ eδ1q with small δ1, supx∈R/Z |µq(x) −
λ| ≤ e−δ2q, for some δ2 = δ2(ε2). Since |µq(x0)−1| ≥ e−δ1q for each x0 ∈ R, this
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implies that |λ| ≥ e−δ1q/2. In particular, supx∈R/Z |µq(x) − λ| < |λ|/2, so that
d = 0.

Let φ(k) =
∑k−1
j=0 φ(x+ jp/q). By hypothesis, ‖e2πiφ(k)‖ε′2 ≤ e

δ1q, 1 ≤ k ≤ q and

‖e−2πiφ(q)‖ε′2 ≤ e
δ1q. This implies that

(3.2) ‖φ(k) − kφ̂0‖ε′3 ≤ Cδ1q.

Indeed, through {|=z| < ε′2}, it is obvious that −=φ(k) ≤ δ1q, 1 ≤ k ≤ q and
=φ(q) ≤ δ1q, and since for 1 ≤ k ≤ q − 1 we have φ(k)(z) + φ(q−k)(z + kp/q) =
φ(q)(z), we can conclude that we have the estimate |=φ(k)(z)| ≤ 2δ1q through the
same band. To estimate the real part, one just uses that harmonic conjugation in
{|=z| < ε′2} composed with restriction to {|=z| < ε′3} is a bounded operator on
bounded harmonic functions.

For every k ∈ ZrqZ, let 1 ≤ jk ≤ q−1 be such that |1−e2πijkkp/q| ≥ |1−e2πi/3|.
Then

(3.3)
|φ̂k|

|1− e2πikp/q|
=

|φ̂(jk)k |
|1− e2πijkkp/q|

≤ Cδ1qe−2πε
′
3|k|.

Let

(3.4) ψ(x) =
∑

k∈ZrqZ

φ̂k
e2πikp/q − 1

,

so that ‖ψ‖ε3 ≤ Cδ1q. Let θ = φ(q)/q, so that ‖θ‖ε′3 = ‖φ(q)‖ε′3/q ≤ Cδ1. Then

φ(z) = θ(z) + ψ(z + p/q)− ψ(z) (check the Fourier series). Since ‖θ− θ̂0‖ε′3 ≤ Cδ1
and θ is 1/q-periodic, we have ‖θ − θ̂0‖ε3 ≤ e−δq (c.f. (2.8)).

The last statement follows automatically from the construction. �

3.2. Construction of the conjugacy. Fix ε < ε3 < ε2 < ε1 < ε0. Below, C is
a large constant depending on ε, ε2, ε1, ε0 that may increase (finitely many times)
along the argument. Clearly ln ‖t‖ε0 ≤ ln(2‖Aq‖ε0) ≤ δ1q + ln 2. Since t is 1/q-

periodic, it follows (c.f. (2.8)) that ‖t− t̂0‖ε1 < e−δ3q for some δ3 = δ3(ε0, ε).

3.2.1. Case 1. Assume first that |t̂0| < 2. Then t(x) = λ(x) + λ(x)−1 with λ ∈
Cωε1(R/Z,C). Notice also that |λ(x)| = 1 for x ∈ R.

Applying Lemma 3.1 to P = Aq − λ id, we conclude that there exists u ∈
Cωε2(R/Z,C) with 0 ≤ − ln ‖u(z)‖ ≤ Cδ1q, |=z| < ε2, such that Aq(z) · u(z) =
λ(z)u(z). Notice that A(z) · u(z) is a multiple of u(z + p/q) for every z, A(z) =
µ(z)u(z + p/q). Let µk be as in Lemma 3.2. We clearly have

(3.5) max
1≤k≤q

ln ‖µk‖ε2 , ln ‖µ−1k ‖ε2 ≤ Cδ1q + ln ‖Ak‖ε2 ≤ Cδ1q.

Let ψ and θ be given by Lemma 3.2, and let v = e2πiψu. Then A(z)v(z) =
e2πiθ(z)v(z+ p/q). Notice that −Cδ1q ≤ ln ‖v(z)‖ ≤ Cδ1q through {|=z| < ε3} and

‖θ − θ̂0‖ε3 ≤ e−δ4q for some δ4 = δ4(ε2, ε3) > 0.

Let B̃(z) be the matrix with columns v(z) + v(z) and 1
i (v(z) − v(z)). Then

A(z)B̃(z) = B̃(z + p/q)Rθ(z). In particular, b(z + p/q) = b(z), where b = det B̃.

Since ln ‖b‖ε3 ≤ Cδ1q, we conclude that ‖b− b̂0‖ε ≤ e−δ5q, for some δ5 = δ5(ε3, ε),
provided δ1 is sufficiently small.

We claim that ln ‖b−1‖ε ≤ Cδ1q. Since b has exponentially small oscillation, it
suffices to show that ln b(x0)−1 ≤ Cδ1q for some x0 ∈ R. If this does not hold,
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then there exists κ ∈ C with |κ| = 1 such that − ln ‖v(x0) − κv(x0)‖ � δ1q.

But since Aq(x0)(v(x0)− κv(x0)) = λ(x0)v(x0)− κλ(x0)−1v(x0), we conclude that
− ln |λ(x0) − λ(x0)−1| − ln ‖v(x0)‖ � δ1q. Since − ln(2 − |t(x0)|) ≤ Cδ1q, this
implies that − ln ‖v(x0)‖ � δ1q, contradiction.

Up to exchanging the roles of λ and λ−1 (which changes θ to −θ and v(z) to

v(z)), we may assume that b(x) > 0 for x ∈ R. Now let B−1 = 1
b1/2

B̃. Then

‖B‖ε ≤ eCδ1q and B(x+ p/q)A(x)B(x)−1 = Rθ(x), as desired.

3.2.2. Case 2. Assume now that |t̂0| > 2. Then t(z) = λ(z) + λ(z)−1 with λ ∈
Cωε1(R/Z,R). The argument below is a simple adaptation of that of the previous
case.

Applying Lemma 3.1 and Remark 4.1 to P = Aq−λ id, we obtain u ∈ Cωε2(R,R2)

with e−Cδ1q ≤ ‖u(z)‖ ≤ 1, |=z| < ε2 such that u(z + 1) = ±u(z) and Aqu = λu.
Notice that A(z) ·u(z) is a multiple of u(z+p/q) for every z, A(z)u(z) = µ(z)u(z+
p/q). Notice that µ is 1-periodic. Let µk be as in Lemma 3.2. We clearly have
‖µk‖ε2 , ‖µ−1k ‖ε2 ≤ eCδ1q‖Ak‖ε2 ≤ eCδ1q, 1 ≤ k ≤ q. Let ψ and θ be given by Lemma

3.2, and let v = e2πiψu. Then v is real-symmetric and A(z)v(z) = γ(z)v(z + p/q),
where γ(z) is 1/q-periodic and real-symmetric. Notice that γ has the same sign as
µ and γq = λ.

An analogous argument yields a solution v′ ∈ Cωε3(R,R2) such that v′(z + 1) =

±v(z), Aqv
′ = λ−1v′ and A(z)v′(z) = γ(z)−1v(z+p/q). Notice that since λ 6= λ−1,

v is not colinear with v′, so the determinant of the matrix with columns v(x) and
v′(x) does not change sign for x ∈ R. Thus v and v′ are both 1-periodic or 1-

antiperiodic. Take B̃ as the matrix with columns v and v′. Since A(z)B̃(z) =

B̃(z + p/q)

(
γ(z) 0

0 γ(z)−1

)
, b = det B̃ is 1/q-periodic, so that ‖b − b̂0‖ε ≤ e−δ5q

(where δ5 > 0 is independent of δ1 small). For fixed x0 ∈ R, since Aq(x0) is an eδ1q

bounded matrix whose eigenvalues λ(x0) and λ−1(x0) are e−Cδ1q apart, the angle
between the eigenvectors v(x0) and v′(x0) is at least e−Cδ1q. Thus |b(x0)| ≥ e−Cδ1q,
and hence |b̂0| ≥ e−Cδ1q. The result follows by taking B−1 as the matrix with
columns v and v′/b. �

4. Proof of Theorem 2.1

4.1. Preliminary estimates. An important input in our estimates is the poly-
nomial bound on solutions of the Corona problem. Those can already be found in
the original work of Carleson [C], but the more precise version given here has been
proved using Wolff’s approach.

Theorem 4.1 (Uchiyama [U], see Trent [T]). There exists C > 0 with the following

property. Let ai : D→ C, 1 ≤ i ≤ k, be such that δ ≤ (
∑k
i=1 |ai(x)|2)1/2 ≤ 1, x ∈ D.

Then there exists ãi : D → C such that (
∑k
i=1 |ãi|2)1/2 ≤ Cδ−2(1 − ln δ) and such

that
∑k
i=1 aiãi = 1.

It is easy to see that Corona estimates for the disk imply corresponding ones for
the annulus.

Lemma 4.2. Let ai ∈ Cωδ (R/Z,C), 1 ≤ i ≤ k, be such that δ ≤ (
∑k
i=1 |ai(z)|2)1/2 ≤

1 through {|=z| < δ}. Then there exists ãi ∈ Cωδ (R/Z,C), 1 ≤ i ≤ k, such that

(
∑k
i=1 |ãi(z)|2)1/2 ≤ Cδ−2(1 + ln δ) (with C > 0 as in the previous theorem) and
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such that
∑k
i=1 aiãi = 1. Moreover, if all the ai are real-symmetric, we can choose

all the ãi real-symmetric.

Proof. By the previous theorem, there exist a′i ∈ Cωε (R,C) be such that
∑k
i=1 aia

′
i =

1 and (
∑k
i=1 |a′i(z)|2)1/2 ≤ Cδ−2(1 + ln δ) (we use that the strip {|=z| < δ} is

conformally equivalent to D). Let a
(j)
i (z) = 1

j

∑j−1
n=0 a

′
i(z + n). Let jn → ∞ be a

sequence such that for every 1 ≤ i ≤ k, a
(jn)
i converges in the topology of uniform

convergence on compact sets, and let ãi be the limits. Then ãi ∈ Cωδ (R/Z,C).
For the last statement, notice that if the ai are real-symmetric then we can

substitute each ãi(z) by 1
2 (ãi(z) + ãi(z)). �

Lemma 4.3. There exists C > 0 with the following property. Consider a func-

tion P (0) =

(
a(0) b(0)

c(0) d(0)

)
with coordinates in Cωε0(R/Z,C). Assume that δ ≤

‖P (0)(z)‖ ≤ 1 through {|=z| < ε0} and let ‖detP (0)‖ε0 = ρ(δ2/ ln δ)2. If ρ < C−1

then there exists P =

(
a b
c d

)
with coordinates Cωε0(R/Z,C) such that ‖P (0)−P‖ ≤

−Cρ(δ2/ ln δ) and detP = 0. Moreover, if P (0) is real-symmetric then P can be
chosen real-symmetric.

Proof. Let K0 =

(
a b
c d

)
be such that a(0)d + ad(0) − b(0)c − bc(0) = 1. Let

P (1) = P (0) −K0 detP (0). Then detP (1) = (detP (0))2 detK0. Choosing K0 with
minimal ‖K0‖ε0 , using Lemma 4.2, we get |detP (1)| ≤ Cρ2(δ2/ ln δ)2, while ‖P (1)−
P (0)‖ε0 < −Cρδ2/ ln δ. Iterating this procedure we get a sequence P (n) converging
to P as desired. �

Lemma 4.4. Let w ∈ Cωε (R/Z,C2) be such that δ ≤ ‖w(z)‖ ≤ 1 through {|=z| <
ε}. If w(x) is a multiple of a real vector for x ∈ R/Z, then there exists w̃ ∈
Cωε (R,R2) such that w̃(x+ 1) = ±w̃(x) for every x ∈ R, w(x) is a multiple of w̃(x)
for every x ∈ R, and C−1δ3/2 ≤ ‖w̃(x)‖ ≤ Cδ−1/2 for |=x| < ε.

Proof. Let w = (a, b), and let ã(z) = a(z), b̃(z) = b(z). Let φ = a/ã = b/b̃. Then
2−1/2δ ≤ φ(z) ≤ 21/2δ−1 through {|=z| < ε}. Let w̃(x) = φ−1/2w(x). �

Remark 4.1. If in the statement of Lemma 3.1 we further assume that P is real-
symmetric, we can then obtain, using Lemma 4.4, a real-symmetric solution of Pu =
0 satisfying the required bounds (with adjusted constants), which is not necessarily
1-periodic, but satisfies u(x) = ±u(x + 1). It is not possible in general to get a

1-periodic solution, as exemplified by P (x) =

(
− sinπx cosπx − sin2 πx

cos2 πx sinπx cosπx

)
.

Recall the basic convexity estimate (Hadamard Three Circles Theorem),

(4.1) sup
=z=ta+(1−t)b

ln |φ(z)| ≤ t sup
=z=a

ln |φ(z)|+ (1− t) sup
=z=b

ln |φ(z)|,

for a 1-periodic analytic function φ defined in a neighborhood of the strip {a ≤
=z ≤ b}.

Lemma 4.5. For every 0 < ε1 < ε0, there exists C0 > 0, δ0 > 0 such that for every
0 < δ < δ0, if q is sufficiently large and φ ∈ Cωε0(R/Z,C) is such that ‖φ‖ε0 ≤ eδq,
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while there exists z with |=z| < ε1 such that |φ(z)|, ..., |φ(z + (q − 1)/q)| < e−Cδq

with C > C0, then ‖φ‖ε1 ≤ max{e−C
−1
0 Cδq, e−δ0q}.

Proof. Let φ̃(x) =
∑q−1−[q/2]
k=−[q/2] φ̂ke

2πikx. Then ‖φ − φ̃‖ε1 ≤ e−δ1q with δ1 =

δ1(ε0, ε) > 0, provided δ0 is sufficiently small. By Lagrange interpolation,

(4.2) sup
=x==z

‖φ̃(x)‖ ≤
q−1∑
k=0

|φ̃(z + k/q)| ≤ q(e−δq + e−δ1q).

(Indeed ψ(x) = e2πi[q/2]xφ̃(x + z) satisfies ψ(x) =
∑q−1
k=0 ψ(k/q)cq(x − k/q) where

cq(x) = 1
q

∑q−1
k=0 e

2πikx/q, so that supx∈R/Z |cq(x)| = 1.) The result follows by

convexity, c.f. (4.1). �

4.2. Construction of the conjugacy. Fix ε < ε′ < ε0. As in the proof of
Theorem 2.2, the hypothesis implies that

(4.3) ‖t(x)− t̂0‖ε′ ≤ e−δ3q

for some δ3 = δ3(ε′, ε0) > 0.
There are 2 essentially distinct cases:

(1) |2− |t̂0|| ≥ e−C
2
0δ1q,

(2) |2− |t̂0|| < e−C
2
0δ1q.

Here C0 = C0(ε0, ε) will be some appropriately large constant. The first case is
covered by Theorem 2.2, so we concentrate here on the second.

Remark 4.2. In the analysis of the second case, we will actually obtain L∗ ∈
SO(2,R).

We will use, in two distinct situations, the following estimate.

Lemma 4.6. For every ε < ε1 < ε0, there exists C5 > 1 such that for every
C3 > 1 sufficiently large and every C4 > 1, for every δ1 > 0 is sufficiently small,
if p/q ∈ Q with q sufficiently large, and A ∈ Cωε0(R/Z,SL(2,R)) satisfies (2.1),
then the following property holds. If there exists W ∈ Cωε1(R/Z,SL(2,R)) and
R ∈ SO(2,R) satisfying

(4.4) ‖W (z + p/q)A(z)−RW (z)‖ε1 ≤ e−C3C4δ1q,

while

(4.5) ‖W (z)‖ ≥ e−C4δ1q, |=z| < ε1,

and

(4.6) ‖ detW‖ε1 ≤ e−C3C4δ1q,

then there exists B ∈ Cωε (R/Z,PSL(2,R)) and a constant diagonal matrix D ∈
SL(2,R) such that ‖B‖ε ≤ eC5C4δ1q and ‖B(z + p/q)A(z)B(z)−1 −D‖ε ≤ e−C4δ1q.

Proof. Fix ε < ε2 < ε1. Apply Lemma 4.3 to P (0) = W to obtain P with detP = 0

such that ‖P −W‖ε1 ≤ eC
−1C3C4δ1q. Using Lemma 3.1 together with Remark 4.1

to get u ∈ Cωε2(R,R2) such that u(z + 1) = u(z) or u(z + 1) = −u(z) such that

Pu = 0, and satisfying e−CC4δ1q ≤ ‖u(z)‖ ≤ 1 through {|=z| < ε2}. Then

(4.7) ‖W (z) · u(z)‖ε2 ≤ e−C
−1C3C4δ1q.
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Using (4.4) we get

(4.8) ‖W (z + p/q) ·A(z)u(z)‖ε2 ≤ e−C
−1C3C4δ1q,

Using (4.5), it follows that A(z) · u(z) is e−C
−1C3C4δ1q close to a multiple of u(z +

p/q), |=z| < ε2. Using Lemma 4.2, define B̃ ∈ Cωε2(R/Z,PSL(2,R)) with first
column u. Then

(4.9) B̃(z + p/q)−1A(z)B(z) =

(
µ(z) s̃2(z)
s̃3(z) µ(z)−1 + s̃4(z)

)
,

with µ real-symmetric, and ‖s̃3‖ε2 , ‖s̃4‖ε2 < e−C
−1C3C4δ1q. As in the proof of

Theorem 2.2, we can apply Lemma 3.2 (with ε3 = ε) to obtain ψ and θ such that

B′ =

(
e−ψ 0

0 eψ

)
B̃ satisfies

(4.10) B′(z + p/q)A(z)B′(z)−1 =

(
e2πiθ(z) s′2(z)
s′3(z) e−2πiθ(z) + s′4(z)

)
,

with ‖s′3‖ε, ‖s′4‖ε ≤ e−C
−1C3C4δ1q. We also have the bound ‖B′‖ε ≤ eCC4δ1q, and

hence ‖s′2‖ε ≤ eCC4δ1q. Since ‖θ − θ̂0‖ε ≤ e−δq with δ = δ(ε, ε2), the result follows

with B−1 =

(
d 0
0 d−1

)
B′, d = e10C4δ1q(1 + ‖s′2‖ε). �

One key consideration when t̂0 is close to ±2 is whether ±Aq is close to the
identity or not. Fix ε < ε1 < ε′. Notice that if ‖Aq ∓ id ‖ε1 ≥ e−C0δ1q then

(4.11) ‖Aq(z)∓ id ‖ ≥ e−C1C0δ1q, |=z| < ε1,

for an appropriately large constant C1, which does not depend on the choice of C0.
Indeed, if this was not the case then there would exists z with |=z| < ε1 such that
‖Aq(z + kp/q) ∓ id ‖ ≤ ‖Ak(z)‖2‖Aq(z) ∓ id ‖ ≤ e−C2C0δ1q for 0 ≤ k ≤ q − 1 with
C2 large. Applying Lemma 4.5 to the coefficients of Aq ∓ id, that are bounded by
eδ1q + 1 through {|=z| < ε0}, leads to a contradiction.

We will assume below that C0 is chosen much bigger than C1. Then, under the
assumption that (4.11) holds, the result follows from Lemma 4.6, with W = Aq∓id.
Notice that in this case the matrix L∗ can be taken as ± id.3

Assume not that (4.11) does not hold, so that, as explained above, we must have

(4.12) ‖Aq ∓ id ‖ε1 ≤ e−C0δ1q.

Let us consider a large coefficient of the discrete Fourier transform of the essen-
tially periodic sequence {Rls/2qAs}q−1s=0, where l = 0 if Aq is close to id and l = 1 is

Aq is close to − id. More precisely, take Wk =
∑q−1
s=0 Rks/qRls/2qAs, 0 ≤ k ≤ q− 1.

Then

(4.13) Wk(z + p/q)A(z) = R−(2k+l)/2q(Wk(z)±Aq(z)− id),

so that by (4.12),

(4.14) ‖Wk(z + p/q)A(z)−R−(2k+l)/2qWk(z)‖ε1 ≤ e−C
−1C0δ1q

3Indeed the diagonal matrix D given by Lemma 4.6 is close to ± id since trDq is close to trAq

which is close to ±2.
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(here and below, we use C for quantities that do not become larger if C0 is taken
large, so that we can always assume that C0 > C). Clearly, for every x ∈ R/Z and
any unit vector y ∈ R2,

(4.15)

q−1∑
k=0

‖Wk(x) · y‖2 = q

q−1∑
s=0

‖As(x) · y‖2

(Parseval identity). The average of the right hand side over the circle of unit vectors
is

(4.16) q

q−1∑
s=0

‖As(x)‖2 + ‖As(x)‖−2

2
≥ q2,

so for every x ∈ R/Z, there exists one unit vector y such that
∑q−1
k=0 ‖Wk(x) · y‖2 ≥

q2. Fix x0 ∈ R and let W = Wk0 where k0 is such that such that ‖Wk0(x0)‖2 is
maximal. Then ‖W (x0)‖2 ≥ q.

We claim that for fixed ε < ε′1 < ε1,

(4.17) − ln ‖W (z)‖ ≤ Cδ1q, |=z| < ε′1.

Indeed, if ‖W (z)‖ ≤ e−Cδ1q with large C, then max0≤j≤q−1 ‖W (z+jp/q)‖ ≤ e−Cδ1q
with large C, and Lemma 4.5 implies that ‖W‖ε′1 ≤ e−Cδ1q with large C. This

contradicts ‖W (x0)‖2 ≥ q, so that (4.17) holds.

Let w = detW . Then, by (4.14), ‖w(z + p/q) − w(z)‖ε1 ≤ e−C
−1C0δ1q, so w

is e−C
−1C0δ1q close to 1

q

∑q−1
k=0 w(x + kp/q), which is 1/q-periodic and bounded

by qe2δ1q over {|=z| < ε1}. By convexity, c.f. (4.1), we get that ‖w − ŵ0‖ε′1 ≤
e−C

−1C0δ1q.
Assume that − ln |ŵ0| ≤ C1/2

0 δ1q. If w(x) > 0 for x ∈ R, then take B = 1
w1/2W .

If w(x) < 0 for x ∈ R, then take B =

(
1 0
0 −1

)
1

(−w)1/2
W . The result follows (with

L∗ = R−(2k+l)/2q).

Assume that − ln |ŵ0| ≥ C
1/2
0 δ1q. The result follows by applying Lemma 4.6

(with ε′1 instead of ε1). Notice that in this case L∗ can be taken as ± id (c.f.
footnote 3). �

Remark 4.3. The analysis above can be refined further to yield considerably more
precise estimates.

5. Applications

We start with the two corollaries about almost reducibility near constants.
Proof of Corollary 1.2. Any one-frequency cocycle which is close to constant is
either uniformly hyperbolic or subcritical (this is essentially due to [BJ1] and [BJ2],
and it is explicitly obtained in [A1] by a different argument). Uniformly hyperbolic
cocycles are always almost reducible: they can be conjugated to a diagonal cocycle,
which can then be conjugated arbitrarily close to a constant one using approximate
solutions of the cohomological equation. If α is exponentially Liouville, the result
then follows by Theorem 1.1. The complementary case was established earlier in
[A1].4 �

4For α Diophantine, i.e., under the condition ln qn+1 = O(ln qn), this was established in [AJ2]
Theorem 4.1 (rigorously speaking, [AJ2] only deals with the case of Schrödinger cocycles, but this



ALMOST REDUCIBILITY AND ABSOLUTE CONTINUITY I 15

Proof of Corollary 1.3. Let (α,A) be almost reducible and let B(n) be the sequence
of conjugacies as in the definition. Let (α(n), A(n)) be any sequence of non-almost
reducible cocycles converging to (α,A). Then there exists a sequence jn → ∞
such that Ã(n)(x) = B(n)(x + α(jn))A(jn)(x)B(n)(x)−1 converges to a constant.

By Corollary 1.2, (α, Ã(n)) must be almost reducible for large n. Since almost
reducibility is conjugacy invariant, (α(jn), A(jn)) is almost reducible, contradiction.

�
Next we deduce the promised equivalence between almost reducibility and “al-

most reducibility through coordinate changes isotopic to the identity” for cocycles
which are not uniformly hyperbolic:
Proof of Theorem 1.4. Assume first thay α is not exponentially Liouville. In this
case, the result was previously established in [A1] for cocycles near constant. In

general, by definition of almost reducibility we may choose a first conjugacy B̃ that
takes the cocycle close to a constant, to which the result applies. By composing
the coordinate changes, we obtain a sequence B̃(n) conjugating the cocycle near a
constant (α, R̃∗) with R̃∗ ∈ SO(2,R), but the B̃(n) are homotopic to B̃, which is not

necessarily homotopic to a constant. We can then set B(n)(x) = R−dx/2B̃
(n)(x),

where d is the topological degree of B̃(n) : R/Z → PSL(2,R), which now provide

conjugacies near a constant (α,R∗) with R∗ = R−dα/2R̃∗.
Assume now that α is exponentially Liouville. The hypothesis clearly implies

subcriticality, and we are going to show that our proof of Theorem 1.1 can be
adapted to conclude the stronger form of almost reducibility.

As in the proof of Theorem 1.1, consider an exponentially good periodic approx-
imation (with exponent δ′ > 0) and apply Theorem 2.1 to obtain B and L∗, satisfy-
ing ‖B‖ε ≤ eCδ1q and ‖B(z + p/q)A(z)B(z)−1 − L∗‖ε ≤ e−δ1q, where 0 < δ1 � δ′.

Let us first consider the case where L∗ ∈ SO(2,R). The bound ‖B‖ε ≤ eCδ1q

implies that the topological degree d of B : R/Z→ PSL(2,R) is at most C ′(ε)Cδ1q.
5

Notice that the function B′(x) = R−dx/2B(x) is then homotopic to a constant, and

if ε′ > 0 is sufficiently small (depending on ε0, ε, δ1), we get ‖B′‖ε′ < e2Cδ1q and
‖B′(z + α)A(z)B′(z)−1 − L‖ε′ ≤ e−δ1q/2, where L = R−dp/2qR−dx/2L∗Rdx/2 =
R−dp/2qL∗ (here we use that L∗ ∈ SO(2,R).

Let us now consider the case where L∗ is diagonal. As discussed in Remark 4.2,

we may assume that ||t̂0| − 2| ≥ e−C
2
0δ1q for some fixed constant C0 > 0. Then

Theorem 2.2 gives more precise information: B(z + p/q)A(z)B(z)−1 is of the form

Rθ(z) (if |t̂0| > 2) or

(
eθ(z) 0

0 e−θ(z)

)
(if |t̂0| < 2) for some 1/q periodic θ(z) which

oscillates at most e−δ2q around its mean (for some fixed δ2 > 0). We can thus
assume to be in the second case. Let us show that if δ1 > 0 is sufficiently small and
q is sufficiently large then (α,A) must be uniformly hyperbolic. This is the same as
showing that (α,A′) is uniformly hyperbolic, where A′(x) = B(x+α)A(x)B(x)−1.

case implies the general one by a simple abstract argument, see Lemma 2.2 of [AJ3]). Under the

weaker condition ln qn+1 = o(qn) (defining the complement of the exponentially Liouville regime),
almost reducibility near constants follows from [A1], which provides the necessary estimates for
the argument of [AJ2] (see Section 3.7 of [A1]).

5Consider a suitable approximation by trigonometric polynomials which is homotopic to B (by

truncation of the Fourier series frequencies higher than C′(ε)Cδ1q), and notice that the resulting

bound on the number of zeros of a non-vanishing coordinate also bounds the topological degree
of B.
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Notice that for some x0 ∈ R/Z we have |t̂0| = |eqθ(x0) + e−qθ(x0)| ≥ 2 + e−C
2
0δ1q,

so |θ(x0)| > e−C
2
0δ1q. This implies that |θ(x)| > e−C

2
0δ1q − e−δ2q ≥ e−C

2
0δ1q/2 for

x ∈ R/Z. In particular, θ(x) does not change sign.
Assume, for definiteness, that θ(x) > 0 for every x ∈ R/Z. We are going to show

that for each non-zero vector

(
a
b

)
∈ R2 with |a| ≥ |b| and for each x ∈ R, applying(

a′

b′

)
= A′(x) ·

(
a
b

)
satisfies |a′| > |b′|, which implies uniform hyperbolicity of

(α,A′) by the usual conefied criterion [Yoc]. We have

(5.1)

(
a′

b′

)
= B(x+ α)B(x+ p/q)−1 ·

(
eθ(x)a
e−θ(x)b

)
,

so that

(
a′

b′

)
is obtained by applying a matrix e−δ

′q/2 close to the identity to

a vector

(
a′′

b′′

)
with |a′′| ≥ (1 + e−C

2
0δ1q)2|b′|. Thus |a′| ≥ (1 + e−C

2
0δ1q)|b′| as

desired. �
As explained in §1.2, Corollary 1.5 follows from Theorem 1.4.
Next we consider the applications to one-frequency Schrödinger operators. The

proof of absolute continuity of the i.d.s., Corollary 1.8, was explained in §1.3.
Proof of Corollary 1.6. It is shown in [AFK], Theorem 1.2, that for almost ev-
ery energy E, either the Lyapunov exponent is positive or (α,A(E−v)) is rotations
reducible. Since rotations reducibility implies almost reducibility (as one can ap-
proximately solve the cohomological equation), this means that we can split the
spectrum into three parts, Σ− (corresponding to almost reducible energies), Σ+

(corresponding to energies with a positive Lyapunov exponent), and Σ0 (the zero
Lebesgue measure complement). By [LS], [K], ac components of spectral measures
give zero weight to Σ+, and since Σ0 has zero Lebesgue measure, they must give
full weight to Σ−.

On the other hand, Kotani [K] (see also [D], Corollary 1) showed that if in some
open set in the spectrum6 the i.d.s. is absolutely continuous and the Lyapunov
exponent vanishes, then the restriction of the spectral measures are absolutely
continuous for almost every phase. The result follows from Corollary 1.8. �

Corollary 1.7 is an immediate consequence of Corollaries 1.2 and 1.6.

References

[A1] Avila, A. The absolutely continuous spectrum of the almost Mathieu operator. Preprint.
[A2] Avila, A. Global theory of one-frequency Schrödinger operators I: stratified analyticity of

the Lyapunov exponent and the boundary of nonuniform hyperbolicity. Preprint.

[A3] Avila, A. Global theory of one-frequency Schrödinger operators II: acriticality and the
finiteness of phase transitions for typical potentials. Preprint.

[A4] Avila, A. Almost reducibility and absolute continuity II. In preparation.

[AFK] Avila, A.; Fayad, B.; Krikorian, R. A KAM scheme for SL(2,R) cocycles with Liouvillean
frequencies. Preprint.

[AJ1] Avila, A.; Jitomirskaya, S. The Ten Martini Problem. Ann. of Math. 170 (2009), 303-342.
[AJ2] Avila, A.; Jitomirskaya, S. Almost localization and almost reducibility. Journal of the

European Mathematical Society 12 (2010), 93-131.

6In [D], Corollary 1, the whole spectrum is considered, but the argument applies unchanged
when restricting considerations to an open subset.



ALMOST REDUCIBILITY AND ABSOLUTE CONTINUITY I 17
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