
GENERIC SINGULAR SPECTRUM FOR ERGODIC
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Abstract. We consider Schrödinger operators with ergodic potential Vω(n) =
f(T n(ω)), n ∈ Z, ω ∈ Ω, where T : Ω → Ω is a non-periodic homeomorphism.

We show that for generic f ∈ C(Ω), the spectrum has no absolutely continuous
component. The proof is based on approximation by discontinuous potentials
which can be treated via Kotani Theory.

1. Introduction

Let Ω be a compact metric space, T : Ω → Ω a homeomorphism, and µ a T -
ergodic Borel measure. We will always assume that T is not periodic, that is, µ is
non-atomic. For a bounded and measurable function f : Ω → R, we consider (line)
Schrödinger operators Hω = ∆+Vω , n ∈ Z with potential Vω(n) = f(T nω) and the
associated Lyapunov exponents γ(z), z ∈ C. By Kunz-Souillard (cf. [5, 12]), there
exists a compact set Σac(f) ⊆ R such that σac(Hω) = Σac(f) for µ-a.e. ω ∈ Ω. By

Pastur-Ishii-Kotani (cf. [5, 9, 10, 14, 15]), Σac(f) = {E ∈ R : γ(E) = 0}
ess

.
We shall only consider situations where the potentials Vω are not periodic. In this

case, it is an interesting question whether there can be any absolutely continuous
spectrum.

It was observed by Kotani, [11], that Σac(f) is empty if f takes only finitely
many values. Damanik and Killip, [6], derived the same conclusion under the
assumption that f is discontinuous at some point ω0 (but continuous at all points
in the forward orbit of ω0 under T ). Here, we will consider the case of continuous
f . It is not in general true in this case that Σac(f) is empty: If Ω = R/Z, T is
a Diophantine irrational rotation, v is analytic and λ > 0 is small enough, then
for f = λv, the spectrum is (almost surely) purely absolutely continuous; see, for
example, Bourgain and Jitomirskaya [4] and references therein. However, we show
that absence of absolutely continuous spectrum is a generic phenomenon:

Theorem 1. There is a residual set of functions f in C(Ω) such that Σac(f) = ∅.

Remark 1.1. A subset of a complete metric space (or more generally a Baire space)
is called residual or (Baire) generic if it contains a countable intersection of dense
open sets. By Baire’s Theorem, such a set is dense.

Remark 1.2. It is well known (see [3] for a more general result) that for generic
potentials, the Lyapunov exponent vanishes generically in the spectrum. Frequently
(for instance, if T : Ω → Ω has a periodic point in the support of µ), the spectrum
contains intervals in a persistent way, and hence has positive Lebesgue measure.
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This is not incompatible with our result, since the Lyapunov exponent can be
discontinuous.

The method used in the proof of Theorem 1 can be applied to certain one-
parameter families of potentials. This has the following consequence.

Theorem 2. There is a residual set of functions f in C(Ω) such that Σac(λf) = ∅
for almost every λ > 0.

This is particularly striking in the case of quasiperiodic systems. In this context
one often expects absolutely continuous spectrum for small coupling, and as we
mentioned before, this has been established under strong regularity assumptions
on the potential (Bourgain-Jitomirkaya’s result). It was not clear whether the
assumption on the regularity was an artifact of the known methods. Our result
shows that some regularity is indeed necessary: it is not enough to assume only
continuity of the potential. It is an interesting open problem to determine the
weakest possible regularity assumption on f under which a Bourgain-Jitomirskaya-
type result holds.

Acknowledgements. This work was done while the first author was visiting Caltech.
We would like to thank Svetlana Jitomirskaya and Barry Simon for stimulating
discussions.

2. A Semi-Continuity Result

We will need some basic facts about Lyapunov exponents and m-functions, see
[15]. The Lyapunov exponent is defined by

γf (E) = lim
n→∞

1

n

∫

Ω

ln ‖Sn
f,E(ω)‖ dµ(ω),

where

Sn
f,E(ω) = Sf,E(T n−1(ω)) · · ·Sf,E(ω),

and

Sf,E(ω) =

(

E − f(ω) −1
1 0

)

∈ SL(2, C).

We have that E 7→ γf is a non-negative real-symmetric subharmonic function. If
E ∈ H = {z ∈ C : =z > 0}, we have the formula

γf (E) =

∫

Ω

−< lnmω,f (E) dµ(ω),

where mω,f : H → H is a holomorphic function, called the m-function, which is
given almost everywhere by

mω,f (E) = lim
n→∞

Sn
f,E(T−n(ω)) · i

(here we consider the usual action of SL(2, C) by Möbius transformations, i.e.,
(

a b
c d

)

· z = az+b
cz+d ).

Define M(f) = |{E ∈ R : γf (E) = 0}|, where | · | denotes Lebesgue measure. As
a consequence of the results of Ishii, Kotani, and Pastur, we have Σac(f) = ∅ if and
only if M(f) = 0.
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Lemma 1. For every r > 0, Λ > 0, the maps

(1) (L1(Ω) ∩ Br(L
∞(Ω)), ‖ · ‖1) → R, f 7→ M(f)

and

(2) (L1(Ω) ∩ Br(L
∞(Ω)), ‖ · ‖1) → R, f 7→

∫ Λ

0

M(λf)dλ

are upper semi-continuous.

Proof. It is enough to show that (1) is upper semi-continuous, since this implies
that (2) is also upper semi-continuous by Fatou’s Lemma.

We have to show that if (fn)n∈Z+
, f are uniformly bounded in L∞ and fn → f

in L1, then lim sup M(fn) ≤ M(f).
Assume otherwise. Then (by passing to a suitable subsequence), there are a

constant C < ∞ and a sequence (fn) such that

(i) fn → f in L1 and pointwise,
(ii) ‖fn‖∞ ≤ C, ‖f‖∞ ≤ C,
(iii) lim inf M(fn) ≥ M(f) + ε for some ε > 0.

By (i), we have pointwise convergence of the m-functions mω,fn
in H for al-

most every ω. Thus, by dominated convergence and (ii), the associated Lyapunov
exponents γfn

(E) converge pointwise in H to γf (E).
By (ii), all Lyapunov exponents are positive outside the interval I = [−2−C, 2+

C]. Thus, we can limit our attention to this interval. Consider the region U in H,
bounded by the equilateral triangle T with sides I, J, K. Consider a conformal
mapping Φ from the unit disk D to U . By the Schwarz-Christoffel formula (see,
e.g., [8]),

(3) Φ′(z) = const ·
3

∏

j=1

(

1 − z
zj

)−2/3

,

where z1, z2, z3 are the inverse images under Φ of the vertices of T .
The functions γfn

◦ Φ are harmonic and bounded in D. This yields

γfn
(Φ(0)) =

1

2π

∫ 2π

0

γfn

(

Φ(eiθ)
)

dθ,

and similarly for γf . Since γfn
(Φ(0)) → γf (Φ(0)) as n → ∞, we infer

1

2π

∫ 2π

0

[

γfn

(

Φ(eiθ)
)

− γf

(

Φ(eiθ)
)]

dθ → 0.

By dominated convergence, the integrals along J and K go to zero individually.
Therefore,

∫

I

[γfn
(E) − γf (E)]g(E) dE → 0

where g(E) = [Φ′(Φ−1(E))]−1. It follows from (3) that g vanishes at the endpoints
of I and is continuous and non-vanishing inside I .

By upper semi-continuity of the Lyapunov exponent and dominated convergence,
∫

I

max{γfn
(E) − γf (E), 0} g(E) dE → 0,
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and hence
∫

I

min{γfn
(E) − γf (E), 0} g(E) dE → 0.

Consequently, since γf |I is bounded and γfn
|I is non-negative,

∫

I

min{γfn
(E) − γf (E), 0} dE → 0.

Choose δ > 0 such that the set X = {E ∈ I : γf (E) < δ} has measure bounded
by M(f) + ε

4
, with ε from (iii). Then,

∫

I\X

min{γfn
(E) − γf (E), 0} dE → 0.

This shows that for n ≥ n0, there exists a set Yn of measure bounded by ε
4

such that

γfn
(E) ≥ δ

2
for every E ∈ I \ (X ∪ Yn). Consequently, lim sup M(fn) ≤ M(f) + ε

2
,

which contradicts (iii). �

3. Approximation by Discontinuous Potentials

Lemma 2. There exists a dense subset Z of L∞(Ω) such that if s ∈ Z, then

(1) s(ω), ω ∈ Ω, takes finitely many values,

(2) s(T n(ω)), n ∈ Z, is not periodic for almost every ω ∈ Ω.

Proof. Let Wk be the closed subspace of functions s taking at most k values. Ob-
viously W = ∪k≥2Wk is dense in L∞(Ω). So we only have to show that there is a
dense subset Sk ⊂ Wk of functions satisfying the second property. Given s ∈ W ,
ω ∈ Ω, let φ(s, ω) ∈ Z+ ∪ {∞} be the period of s(T n(ω)), n ∈ Z. Then φ(s, ω) is a
constant Φ(s) almost everywhere. Let Wk,n = {s ∈ Wk : Φ(s) ≤ n}. It is easy to
see that Wk,n is a closed subset of Wk and Wk 6= Wk,n. Thus, Wk \ ∪n∈Z+

Wk,n is
dense in Wk. �

Lemma 3. For f ∈ C(Ω), ε > 0, δ > 0, Λ > 0, there exists f̃ ∈ C(Ω) such that

‖f − f̃‖∞ < ε, M(f̃) < δ, and
∫ Λ

0
M(λf̃)dλ < δ.

Proof. Let Z be as in Lemma 2 and choose s ∈ Z such that ‖f − s‖∞ < ε
2
. By

the Kotani result, [11], we have M(λs) = 0 for every λ > 0. Next we choose
continuous functions fn, for which we have ‖s − fn‖∞ < ε

2
for all n and ‖s −

fn‖1 → 0 as n → ∞. For instance, take fn(ω) =
∫

Ω
Cn(ω)−1cn(ω, ω′)s(ω′)dν(ω′),

where ν is a probability measure with supp ν = Ω, Cn(ω) =
∫

Ω
cn(ω, ω′)dν(ω′),

cn(ω, ω′) = max{(n+n0)
−1−dist(ω, ω′), 0}, n0 sufficiently large. Lemma 1 implies

M(fn),
∫ Λ

0
M(λfn)dλ → 0 as n → ∞. Thus, choosing n large enough so that

M(fn),
∫ Λ

0
M(λfn)dλ < δ, we complete the proof. �

Proof of Theorem 1. For δ > 0, we define

Mδ = {f ∈ C(Ω) : M(f) < δ}.

By Lemma 1, Mδ is open, and by Lemma 3, Mδ is dense. It follows that

{f ∈ C(Ω) : Σac(f) = ∅} = {f ∈ C(Ω) : M(f) = 0} =
⋂

δ>0

Mδ

is residual. �
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Proof of Theorem 2. For Λ, δ > 0, we define

Mδ(Λ) =
{

f ∈ C(Ω) :

∫ Λ

0

M(λf) dλ < δ
}

.

By Lemma 1, Mδ(Λ) is open and by Lemma 3, Mδ(Λ) is dense. Thus,

⋂

Λ,δ>0

Mδ(Λ)

is residual. It follows that for Baire generic f ∈ C(Ω), we have Σac(λf) = ∅ for
almost every λ > 0. �

4. Concluding Remarks

Remark 4.1. It is possible to improve Lemma 1 to show that M(f) is an upper semi-
continuous function of f ∈ L1(Ω). The additional point is that, given f ∈ L1(Ω)

and ε > 0, we can choose a bounded interval I ⊂ R such that for every f̃ ∈ L1(Ω)
close to f , we have |{E ∈ R \ I : γf̃ (E) = 0}| < ε. To see this, one shows first

that the integrated density of states Nf (E) ∈ L∞(R) is a continuous function of
f ∈ L1(Ω), and then one uses [7] to bound the size of the absolutely continuous
spectrum near infinity.

Remark 4.2. By the Wonderland theorem [16] (see also [13]), the set of f ’s leading
to purely singular spectrum is a Gδ set in all metric topologies that imply strong
resolvent convergence of the associated operators. This permits one to deduce
generic singular spectrum if one can exhibit a dense set with this property. With
the Kotani result (combined with Lemma 2) as input, this only gives a generic set in
L∞(Ω) and does not imply Theorem 1. It is not clear how to prove Theorem 1 using
this strategy, but it would be interesting to find an explicit dense set of continuous
functions such that the corresponding operators have empty absolutely continuous
spectrum.

Remark 4.3. The result of this paper naturally extends to the context of more
general SL(2, R) cocycles. A possible formulation is the following. Given A ∈
C(Ω, SL(2, R)), one can consider a one-parameter family of cocycles (T, RθA), where

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

, and the result is that for generic A and for almost every

θ ∈ R, the Lyapunov exponent of (T, RθA) is positive. The key point is that the
relevant part of Kotani’s Theory (which is used in the proof of Lemma 3) can be
carried out in this setting (see [2] for related results). (To prove the analogue of
Lemma 1, one can use [1] to show that the average Lyapunov exponent of the family
θ 7→ (T, RθA) depends continuously on A in the L1 topology.)

Notice that for certain choices of T (say, irrational rotations), there are open
sets U ⊂ C(Ω, SL(2, R)) such that the Lyapunov exponent of (T, RθA) is 0 for
generic A ∈ U and for generic θ ∈ R, [3]. Based on this, some authors have argued
that under weak smoothness requirements (such as continuity), positive Lyapunov
exponents are rare. Our result shows in a sense that positive Lyapunov exponents
tend to prevail in a mixed topological/measure-theoretic category, even when they
are topologically rare.
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