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Your Digital Camera

Example: 8 mega pixels - each image has 24Mbytes!
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Your Digital Camera

More than 90% of the data is discarded!
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CS to the Rescue

Capture only the necessary information!



An Introduction to
Compressive Sensing

5

CS to the Rescue

optimization

Reconstruct with convex optimization!
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Sparse Signals

We don’t know the significant coefficients ...
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The Twist!

point sampling × measurements

Point Sampling:

y1 = 〈x ,e1〉 , y2 = 〈x ,e2〉 , . . . , yM = 〈x ,eN〉

where N is size of the signal.

Now, we take different measurements:

y1 = 〈x , φ1〉 , y2 = 〈x , φ2〉 , . . . , yM = 〈x , φM〉

where M � N is the number of measurements.
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The Algebraic Problem

• This problem is ill-conditioned!
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The Algebraic Problem

• What if there exists a domain in which x is sparse? (s = Ψx)
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The Algebraic Problem

• ΘΩ = ΦΩΨ∗

• measurements y = ΘΩs
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The solution we want is:

min
s
‖s‖l0 subject to ΘΩs = y

where the l0-norm is:

‖α‖l0 = ] {i : α(i) 6= 0}

NP-hard Problem!!!

• How do we make this problem computationally tractable?
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l1 Magic!



An Introduction to
Compressive Sensing

13

The l1 norm and Sparsity
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The l1 norm and Sparsity
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The l1 norm and Sparsity
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Reconstruction Algorithm

min
s
‖s‖l1 subject to ΘΩs = y

where
ΘΩ = ΦΩΨ∗

This seems like a good procedure
• When does it work?
• What do we need to assume about the sensing matrix ΘΩ?
• And the number of samples?
• What kind of results can we guarantee?
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Fourier Sampling Theorem

On Monday:

• MRI model
• Samples in the frequency domain

Theorem

• s ∈ RN is S-sparse
• M Fourier coefficients are randomly selected

M & S · log N

We can reconstruct s minimizing the l1-norm.
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Fourier Sampling Theorem
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Fourier Sampling Theorem

Theorem

• s ∈ RN is S-sparse
• Φ is the Fourier Transform Matrix of size N × N
• We restrict Φ to a random set Ω of size M such that

M & S · log N

We can recover s by solving the convex optimization problem

min
s
‖s‖l1 subject to ΦΩs = y

A first guarantee: if measurements are taken in the Fourier domain
CS works!
A question: what is special about the Fourier domain?
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Uncertainty Principles

A function and its Fourier transform cannot both
be highly concentrated!

Theorem

If f is zero outside a measurable set Tf and its Fourier transform f̂ is
zero outside a measurable set Ωf , then

|Tf | · |Ωf | ≥ 1
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Another Twist

=⇒ allows good results!
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Uncertainty Principles

⇒ If |T ||Ωc | < 1⇒ we can recover x .

Problem:

There is no such signal!
If it did the uncertainty principle would require |T ||Ωc | ≥ 1.



An Introduction to
Compressive Sensing

20

Uncertainty Principles

⇒ If |T ||Ωc | < 1⇒ we can recover x .
Problem:

There is no such signal!
If it did the uncertainty principle would require |T ||Ωc | ≥ 1.



An Introduction to
Compressive Sensing

20

Uncertainty Principles

⇒ If |T ||Ωc | < 1⇒ we can recover x .
Problem:

There is no such signal!
If it did the uncertainty principle would require |T ||Ωc | ≥ 1.



An Introduction to
Compressive Sensing

21

Extension of the Fourier Sampling Theorem

• It may be difficult to take samples in the Frequency domain.
• The signal may not be sparse in the time domain, but in a

different Ψ domain.

⇒ Other possibilities for Φ e Ψ
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Coherence

Definition (Coherence between Ψ and Φ)

µ(Φ,Ψ) =
√

N max
i,j
|〈φi , ψj〉| , ‖φi‖l2 ‖ψi‖l2 = 1

• µ(Φ,Ψ) measures the minimum angle between φi and ψj

• if we look at the waveforms as vectors in RN , then high
incoherencies mean that these vectors are far apart
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New Sampling Theorem

1 ≤ µ(Φ,Ψ) ≤
√

N
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New Sampling Theorem

Theorem

Reconstruction is exact if

M & S · µ2(Φ,Ψ) · log N

• time and frequency are maximally incoherent (the Fourier basis
ψk (t) = 1√

N
e

2πjk
N and the canonical basis φk (t) = δ(t − k) yield

µ = 1)
• when bases are maximally coherent you have to see all

samples!
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Restricted Isometry Property (RIP)

Definition (Restricted Isometry Constant)

For each integer S = 1,2, . . . ,N we define the S-restricted isometry
constant δS of a matrix ΘΩ as the smallest number such that

(1− δS)‖s‖2
l2 ≤ ‖ΘΩs‖2

l2 ≤ (1 + δS)‖s‖2
l2

for all S-sparse vectors.

RIP⇒ a property of ΘΩ related to the existence and limitation of δS

• A restricted isometry

• An Uncertainty Principle
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Restricted Isometry Property (RIP)

Definition (Restricted Isometry Constant)

For each integer S = 1,2, . . . ,N we define the S-restricted isometry
constant δS of a matrix ΘΩ as the smallest number such that

(1− δS)‖s‖2
l2 ≤ ‖ΘΩs‖2

l2 ≤ (1 + δS)‖s‖2
l2

for all S-sparse vectors.

RIP⇒ a property of ΘΩ related to the existence and limitation of δS

• A restricted isometry
• An Uncertainty Principle

• In truth, the RIP guaranties that the sparsest solution is unique!
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Unique Solution
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Unique Solution

We want to recover s from y = ΘΩs

If the columns of ΘΩ are l.d., ∃sa, sb such that

y = ΘΩsa = ΘΩsb

The columns of ΘΩ can’t be l.i. because it is a fat matrix!

Sparsity to the rescue: all that in necessary is that every
combination of S columns of Θ be l.i.!
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Theorems

• If δ2S < 1 the solution that maximizes sparsity is unique.

Consider s1 e s2 S-sparse such that ΘΩs1 = ΘΩs2 = y .

Let h = s1 − s2.

ΘΩh = ΘΩ(s1 − s2) = ΘΩs1 −ΘΩs2 = 0.

h is 2S-sparse:



An Introduction to
Compressive Sensing

28

Theorems
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Consider s1 e s2 S-sparse such that ΘΩs1 = ΘΩs2 = y .

Let h = s1 − s2.

ΘΩh = ΘΩ(s1 − s2) = ΘΩs1 −ΘΩs2 = 0.

Since h is 2S-sparse, the RIP says that:

(1− δ2S)︸ ︷︷ ︸
>0

‖h‖2 ≤ ‖ΘΩh‖2 = 0

therefore,
h = 0→ s1 = s2
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Theorems

• If δ2S < 1 the solution that maximizes sparsity is unique.

• If δ2S <
√

2− 1 the solution that minimizes the l1 norm and the
one maximizes sparsity are unique and the same.
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Robust CS

For CS to be suitable for real application it must be robust to two
kinds of inaccuracies:

• the signal is not exactly sparse; or
• measurements are corrupted by noise.
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Sparsity Errors
What can we hope for?
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Result Considering the RIP

Theorem

Assume that s is approximately sparse and let sS be as defined
above. Then if δ2S <

√
2− 1, the solution s̃ to

s̃ = min
s
‖s‖l1 subject to ΘΩs = y

obeys

‖s̃ − s‖l2 .
1√
S
· ‖s − sS‖l1
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Measurement Errors

Assume that y = ΘΩs + n where ‖n‖l2 ≤ ε

Constraints:
ΘΩs = y

Theorem

If δ2S <
√

2− 1, the solution s̃ to

s̃ = min
s
‖s‖l1 subject to ‖ΘΩs − y‖l2 ≤ ε

obeys

‖s̃ − s‖l2 .
1√
S
· ‖s − sS‖l1 + ε
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Design of Efficient Sensing Matrices

Given a matrix ΘΩ, the calculus of δS in NP–hard!

Important to determine some measurement ensembles where the
RIP holds.

The actual problem: to design a fat sensing matrix ΘΩ, so that any
subset of columns of size S be approximately orthogonal.

→ deterministic ΘΩ may be a very difficult task

Randomness re-enters the Picture!
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Theorems

Theorem (Gaussian Matrices)

Let the entries of ΘΩ be i.i.d., Gaussian with mean zero and variance
1/M. Then the RIP holds with overwhelming probability if

M & S · log(N/M)

Also valid for:
Random Projections: ΘΩ is a random Gaussian matrix whose rows
were orthonormalized.

Binary Matrices: The entries of ΘΩ be independent taking values
±1/
√

M with equal probability.
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General Orthogonal Measurement Ensembles

Theorem

Let Θ be an orthogonal matrix and ΘΩ be obtained by selecting M
rows from Θ uniformly at random. Then the RIP holds with
overwhelming probability if

M & µ2 · S · (log N)6

• Relates coherence and RIP!
• Usefull if signal is sparse in a fixed Ψ: we determine Φ such that
µ(Φ,Ψ) is small
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