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Your Digital Camera

very large
amount
of data

scene Sensor

Example: 8 mega pixels - each image has 24Mbytes!



Your Digital Camera

scene sensor jpg output

More than 90% of the data is discarded!



CS to the Rescue

scene sensor storage media

Capture only the necessary information!



CS to the Rescue

storage media .
8 recontructed image

(compressed)

Reconstruct with convex optimization!



Sparse Signals
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Sparse Signals

We don’t know the significant coefficients ...



The Twist!

point sampling x measurements

Point Sampling:
n=&xe), y2=(x62), ... , yy={(X,en)

where N is size of the signal.

Now, we take different measurements:

yi=X01), Ya=(X,02), ... , Yu=(X,ém)

where M < N is the number of measurements.



The Algebraic Problem

¢ This problem is ill-conditioned!




The Algebraic Problem

Y Dq

¢ What if there exists a domain in which x is sparse? (s = Vx)



The Algebraic Problem

L @Q = ¢Q\U*
e measurements y = Oqs



The solution we want is:

msjn |sl|, subjectto ©gqs=y

where the f-norm is:

llly = g 4i: ai) # 0}



The solution we want is:

msin |sl|, subjectto ©gqs=y

where the f-norm is:

llly = g 4i: ai) # 0}

NP-hard Problem!!!

e How do we make this problem computationally tractable?



l Magic!

{p Norm lo Norm {1 Norm



The /1 norm and Sparsity

N




The /1 norm and Sparsity

N




The /1 norm and Sparsity

\ 5= min s,
f
N




The /1 norm and Sparsity

5= rnin||s||l1

Ny




Reconstruction Algorithm

min||s||, subjectto ©qs=y
S

where
Oq = PV~

This seems like a good procedure
e When does it work?
o What do we need to assume about the sensing matrix ©q?
¢ And the number of samples?
o What kind of results can we guarantee?



Fourier Sampling Theorem

On Monday:

o MRI model
e Samples in the frequency domain

e sc RN js S-sparse
o M Fourier coefficients are randomly selected
M= S-logN

We can reconstruct s minimizing the Iy -norm.

S nonzero

ﬁ coefficients
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)

N = size of signal



Fourier Sampling Theorem
f f
\
Fourier k
>0
Transform 7!

wm

min| flli, st fwm) =y

0= {OJ17...7UJM}
19| = M



Fourier Sampling Theorem

f

f
\My min st flwn,) =
E Fourier \ 1l st flom)=ym

>0
Transform 7 Q={wy,...,wn}

Q] =M
Wnm

New Notation: & = Fourier Transform Matrix

[

P




Fourier Sampling Theorem

f

. Cminlfl, st fwm) =ym |
Fourier

Transform Q=A{wy,...,wnm}
9] =M

New Notation: & = Fourier Transform Matrix

y f
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y=fio=(f)j0 = Pof [minfll, st @af=y]




Fourier Sampling Theorem

e sc RN js S-sparse

e O js the Fourier Transform Matrix of size N x N

o We restrict ® to a random set 2 of size M such that
M=>S-logN

We can recover s by solving the convex optimization problem

msin Isll, subjectto ®qs=y

A first guarantee: if measurements are taken in the Fourier domain

CS works!
A question: what is special about the Fourier domain?



Uncertainty Principles

A function and its Fourier transform cannot both
be highly concentrated!

If f is zero outside a measurable set T; and its Fourier transform fis
zero outside a measurable set ), then

| T¢| - [Q7| > 1



Another Twist

Frank and Ernest
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Another Twist

Frank and Ernest

TICK w__ ———— I CAN TELL YOU THE T
sugegech ? SAY TIME OR THE  E
I..ECT'EJRE Og PLACE. BUT i

EISENEER ik
UNCET ARTY % FoTH gg
PRINCIPLE } i
— ‘ f-24 §§

o TesvEs T

Copyright (c) 1998 by Thaves. Listributed from www.thecomics.com.

— allows good results!




Uncertainty Principles

8
8

eT

= If | T||Q° < 1 = we can recover x.

S3Y)



Uncertainty Principles

3
®
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Fourier Measurements

Transform Q

eT 39}

= If | T||Q° < 1 = we can recover x.
Problem:

& h Y
Fourier Measurements
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Uncertainty Principles

3
S
<

Measurement:
Q

eT e
= If | T||Q° < 1 = we can recover x.
Problem:

h T i Y
Measurements
+ H T
T€T € 0° cQ

There is no such signal!
If it did the uncertainty principle would require | T||Q°| > 1.



Extension of the Fourier Sampling Theorem

¢ |t may be difficult to take samples in the Frequency domain.

¢ The signal may not be sparse in the time domain, but in a
different W domain.

= Other possibilities for ® e ¥
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Coherence

u(¢,w)=mmi7x|<¢,-,w,->| s N eille N14ille =1

>
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e (P, V) measures the minimum angle between ¢; and 1)

« if we look at the waveforms as vectors in RV, then high
incoherencies mean that these vectors are far apart



New Sampling Theorem

1< p(o,¥) < VN

Maximally Incoherent Maximally Coherent

=(1,0,0) 5 = (0,1,0) ¢3 = (0,0,1)

Y1 = (1,0,0) 42 = (0,1,0) ¢35 = (0,0,1) V1

b= ) ik

lbr. @) = oo

(e d)l = 5 =p=1V3=1 lm ] =0 > u=1-VE=VN
(0,6} = (el =0



New Sampling Theorem

Reconstruction is exact if

MZ>S- 2o, V) - log N

e time and frequency are maximally incoherent (the Fourier basis
Yr(t) = ﬁe# and the canonical basis ¢x(t) = 6(t — k) yield
p=1)

e when bases are maximally coherent you have to see all
samples!



Restricted Isometry Property (RIP)

For each integer S = 1,2, ..., N we define the S-restricted isometry
constant g of a matrix ©q as the smallest number such that

(1= ds)lsllf < 1©asllf < (1+ds)llsll

for all S-sparse vectors.

RIP = a property of ©q, related to the existence and limitation of dg

o A restricted isometry



Restricted Isometry Property (RIP)

For each integer S = 1,2, ..., N we define the S-restricted isometry
constant g of a matrix ©q as the smallest number such that

(1= ds)lsllf < 1©asllf < (1+ds)llsll

for all S-sparse vectors.

RIP = a property of ©q, related to the existence and limitation of dg

o A restricted isometry
¢ An Uncertainty Principle

s is sparse = ©s cannot be concentrated in Q°



Restricted Isometry Property (RIP)

For each integer S = 1,2, ..., N we define the S-restricted isometry
constant g of a matrix ©q as the smallest number such that

(1= ds)lsllf < 1©asllf < (1+ds)llsll

for all S-sparse vectors.

RIP = a property of ©q, related to the existence and limitation of dg

o A restricted isometry
¢ An Uncertainty Principle
¢ In truth, the RIP guaranties that the sparsest solution is unique!



Unique Solution

yl#y2



Unique Solution

We want to recover s from y = ©qs

If the columns of ©q are |.d., 3s,, Sp such that

y = eQSa = eQSb

The columns of ©g can’t be L.i. because it is a fat matrix!



Unique Solution

We want to recover s from y = ©qs

If the columns of ©q are |.d., 3s,, Sp such that

y= eQSa = eQSb

The columns of ©g can’t be L.i. because it is a fat matrix!

combinations of S
Q columns must be 1.1.

Sparsity to the rescue: all that in necessary is that every
combination of S columns of © be L.i.!



Theorems

o If do5 < 1 the solution that maximizes sparsity is unique.

Let h= sy — so.

@Qh = @Q(S1 = Sg) =0qS1 — Ons> =0.
his 2S5-sparse:

H-sparse  5-sparse 10-sparse

5 nonzero coefficients 9 nonzero coefficients



Theorems

o If do5 < 1 the solution that maximizes sparsity is unique.

Let h= sy — so.

@Qh = @Q(S1 — Sg) = @QS1 — eQSZ =0.
Since his 25-sparse, the RIP says that:
(1 —d25) | h|[? < [|©ghl|* = 0
N—_——
>0

therefore,
h=0— S1 = S



Theorems

o If do5 < 1 the solution that maximizes sparsity is unique.

e If d25 < v/2 — 1 the solution that minimizes the /; norm and the
one maximizes sparsity are unique and the same.



Robust CS

For CS to be suitable for real application it must be robust to two
kinds of inaccuracies:

¢ the signal is not exactly sparse; or
e measurements are corrupted by noise.



Sparsity Errors

What can we hope for?
S

Ss

sparse
representation
—-

CS Aquisition CS Recovery



Sparsity Errors

What can we hope for?
S

Ss

sparse . Y
representation CS Aquisition CS Recovery

—-

<

CS Aquisition CS Recovery



Result Considering the RIP

Assume that s is approximately sparse and let ss be as defined
above. Then if 6,5 < \/2 — 1, the solution 5 to

§= msin Isll, subjectto ©qs=y
obeys

- 1
IS =slle S 5 -lls = sslls



Measurement Errors

Assume that y = ©qs + nwhere ||n]|, <e

Constraints:
Oqs=y



Measurement Errors

Assume that y = ©qs + nwhere ||n||, < ¢

Constraints:
Ous=y > [Oas—yl, <e
If 5,5 < /2 — 1, the solution 5 to
5= msin Isll, subjectto [©qs—yll, <e

obeys

“ 1
15 = sl < 75 lIs = sslly + ¢



Design of Efficient Sensing Matrices

Given a matrix ©q, the calculus of §g in NP—hard!

Important to determine some measurement ensembles where the
RIP holds.

The actual problem: to design a fat sensing matrix ©q, so that any
subset of columns of size S be approximately orthogonal.

— deterministic ©q may be a very difficult task

Randomness re-enters the Picture!



Theorems

Let the entries of ©q be i.i.d., Gaussian with mean zero and variance
1/M. Then the RIP holds with overwhelming probability if

M > S log(N/M)

Also valid for:
Random Projections: ©g is a random Gaussian matrix whose rows
were orthonormalized.

Binary Matrices: The entries of ©q be independent taking values
+1/+/M with equal probability.



General Orthogonal Measurement Ensembles

Let © be an orthogonal matrix and ©q be obtained by selecting M
rows from © uniformly at random. Then the RIP holds with
overwhelming probability if

M2 - S- (logN)®

e Relates coherence and RIP!

o Usefull if signal is sparse in a fixed W: we determine ¢ such that
w(®, V) is small
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