
Character Animation
from Motion Capture Data

Technical Report

Adriana Schulz

Instructor: Luiz Velho

Rio de Janeiro, March 4, 2010

Contents

1 Introduction 1

2 Motion Data Acquisition 3

3 Motion Editing and Filtering 7
3.1 Cartoon Animation Filter . 7

4 Motion Synthesis 11
4.1 Motion Graphs . 11

5 Discussions and Future Work 16
5.1 Future Directions . 16

5.1.1 Intrinsic MoCap Problems 16
5.1.2 Brainstorm of Ideas . 17

References 18

i

Chapter 1

Introduction

Realistic animation of human motion is a challenging task, firstly, because
human movements can be quite complex since joints have many degrees of
freedom and, secondly, because people are very sensitive to inaccuracies in
rendered motion.

In this context, motion capture comes out as a very interesting technique
for character animation. Some of the advantages of motion capture over
traditional computer animation of a 3D model are:

• More rapid, even real time results can be obtained. In entertainment
applications, this can reduce the costs of keyframe-based animation.

• The amount of work does not vary with the complexity or length of the
performance to the same degree as when using traditional techniques.
This allows many tests to be done with different styles or deliveries.

• Complex movement and realistic physical interactions, such as sec-
ondary motions, weight and exchange of forces, can be easily recreated
in a physically accurate manner.

• The amount of animation data that can be produced within a given
time is extremely large when compared to traditional animation tech-
niques. This contributes to both cost effectiveness and meeting pro-
duction deadlines.

Nevertheless, MoCap by itself only allows for the reproduction of an ac-
quired motion and, therefore, much effort has been, and is currently being,
put into extending the applications of MoCap data.

1

This technical report describes a course done at IMPA in January/February
2010 under the supervision of Professor Luiz Velho. The objective of this
course is to study character animation based on motion capture data.

In Chapter 2, we describe the first part of the course which aims at under-
standing the MoCap technique and building a database which will be used
in future projects. Motion capture was done in the Visgraf Laboratory using
OPTITRACK cameras and the ARENA software to process the acquired
data and export a bvh file.

In Chapter 3, we describe the second part of the course which involves
filtering and editing motion data. We studied signal processing transfor-
mations applied to motion and implemented a cartoon animation filter [1],
which aims at making the motion more ”animated” by adding effects, such
as anticipation, follow-through, exaggeration and squash-and-stretch.

In Chapter 4, we discuss the problem of synthesizing new streams of
motion from previously acquired data. We implemented a motion graph [2]
that cuts pieces from a motion database and reassembles them in order to
form a new motion.

Finally, in Chapter 5, we present some conclusions of our study, interest-
ing application and future directions.

2

Chapter 2

Motion Data Acquisition

The fist part of this course involves acquiring motion capture data. In this
chapter we discuss the most common motion capture techniques and describe
the system we used to create a motion database.

Altough there are many kinds of motion capture systems (such as me-
chanical and magnetic systems), the most common methods make use of
Optical systems.

Optical systems utilize data captured from image sensors to triangulate
the 3D position of a subject between one or more cameras calibrated to pro-
vide overlapping projections. Data acquisition is traditionally implemented
using special markers attached to an actor1. These systems produce data
with 3 degrees of freedom for each marker, and rotational information must
be inferred from the relative orientation of the markers.

As with traditional animation and many other arts, MoCap is actually
composed of a number of phases:

• studio set-up,

• calibration of capture area,

• performance and capture of movement,

• clean-up of data, and

• post-processing of data.

1More recent systems are able to generate accurate data by tracking surface features
identified dynamically for each particular subject. However, the markerless approach to
motion capture will not be studied in this course.

3

Motion capture was done in the Visgraf Laboratory using six OPTI-
TRACK cameras, as shown in Figure 2.1. Tracking a large number of per-
formers or expanding the capture area is accomplished by the addition of
more cameras. Since each marker must be ”seen” by at least two cameras, a
greater number of cameras diminishes the possibility of occlusions.

Figure 2.1: OPTITRACK cameras set up at the Visgraf Laboratory.

Performers wear a special set of cloths with retroreflexive markers that
are captured by the infrared cameras (see Figure 2.2). These markers are
placed in a way that the position of the rigid body parts are easily acquired.
In most cases, we use three markers placed in a way to form a triangle shape,
as shown in Figure 2.2 .

Figure 2.2: Retroreflexive markers.

The ARENA software (see Figure 2.3)was used to process the acquired

4

data. The first processing step is to trajectorize the data. This procedure
takes the 2D data from each individual camera and changes it to a fully 3D
path of each individual marker. After this procedure the software allows for
post capture editing (such as filling gaps, fixing swaps and smoothing tracks)
and exporting a file in a BVH or C3D format.

Figure 2.3: The ARENA software.

The BVH file format was originally developed by Biovision, a motion
capture services company, as a way to provide motion capture data to their
customers. Nowadays, it is widely used, and many applications support
importing and exporting files in this format. It consists of two parts, a
header section which describes the hierarchy and initial pose of the skeleton,
and a data section which contains the motion data.

We built a motion database using this file format and we used DAZ studio
and Maya software to read the BVH files and create character animation
based on the acquired motions. Figure 2.4 illustrates the rendering of a
dance motion.

We captured movements of dance and fencing as well as some simple
movements such as walking, playing golf, bending and moving arms and

5

(a) (b)

Figure 2.4: In (a) is shown the rendering done in DAZ studio and (b) is
shown the rendering done in Maya.

legs. A complete motion database will soon be available at the Visgraf web
site.

6

Chapter 3

Motion Editing and Filtering

There are many reasons that make editing captured motion extremely impor-
tant. Firstly, it is usually necessary to eliminate artifacts generated during
acquisition. Secondly, it is important to match time and space of computer
generated environments, overcome spatial constraints of capture studios and
allow for the existence of motions that would be extremely hard for an actor
to perform, such as the ones used in special effects. Finally, it is interesting
to be able to reuse motion data in different occasions. For example, given a
walking scene, it should be possible to generate a walk on an uneven terrain
or steeping over an obstacle.

Therefore, the second part of this course involved editing the acquired
MoCap data.

Because there are many degrees of freedom animation and movements
can be quite complex, when developing such editing tools it is important to
bear in mind not only efficiency but also simplicity. In this context, methods
that make use of signal processing techniques prove to be quite interesting
for motion editing [3, 4]

In the next section we discuss one of the many existent methods for
motion filtering and editing.

3.1 Cartoon Animation Filter

We implemented the Cartoon Animation Filter [1], which aims at making the
motion more ”animated” by adding effects of traditional animation. Methods
for manipulating motion in order to emphasize primary actions and bring the

7

scene to life include anticipation, follow-through, exaggeration and squash-
and-stretch[5].

Exaggeration can be used to focus attention and stress a particular ac-
tion. Anticipation effects introduces an action before the character actually
performs it. Follow through refers to the way the character behaves while
completing an action. For example, when throwing a ball, the action con-
tinues after releasing the ball modifying the way the characters arm moves.
Squash and stretch effects are the exaggeration to what happens for example
if we bounce a rubber ball: it squashes up as it hits the ground, and then it
stretches out. These effects define the rigidity of an object by distoring its
shape during an action.

The method described in [1] implements the four motion manipulations
described above by using the filter illustrated in Figure 3.1. The two external
lobes generate the anticipation and follow-through effects and the middle lobe
produces the exaggeration effect. Though we did not implement it during
this work, [1] shows how time-shifted versions of this filter can be used to
generate and squash-and-stretch movements.

(a) (b)

Figure 3.1: In (a) is shown the cartoon animation filter and in (b) the result
of its aplication to a ramp singnal.

Each individual degree-of-freedom (DOF) motion curve from the Mo-
Cap session is filtered individually and independently. The simplicity of this
approach is quite interesting because, as we have previously mentioned, pro-
cessing MoCap data can be very challenging, since it yields a quite large and
an unstructured representation (a sequence of joint angle values).

We implemented this filter in MATLAB and applied it to the motions

8

we had previously captured. Some of the results we obtained are shown in
Figures 3.2 and 3.3.

Figure 3.2: Results of our implementation of the cartoon animation filter.
The First row is the input motion of a golf swing and the second row is the
filtered result

It is noteworthy that when signal processing methods are used to trans-
form the original acquired movements, physically impossible motion can be
produced. Because the editing tools do not consider physical constraints, the
resulting movement usually presents many undesirable artifacts. One partic-
ularly distracting artifact is when the characters feet move when they ought
to remain planted, a condition known as footskate.

To solve these problems, post-processing techniques should be developed
in order to adjust constraint violations.

Though the results we obtained do present some of these undesirable
artifacts, it is not within the scope of this course to study or implement such
techniques. Nevertheless, we did implement a transform that translates the
root node in order to keep the character’s feet on the ground, so the character
does not ”fly” during the scene.

9

Figure 3.3: Results of our implementation of the cartoon animation filter.
The First row is the input motion of arms stretching and the second row
is the filtered result. Notice how the stretching of the arms is exaggerated
and how the movement is anticipated as the hands go further down before
starting to go up.

10

Chapter 4

Motion Synthesis

In the previous chapter, we discussed editing techniques that are able to
modify previously acquired motion clips. However there is more to motion
editing than simply altering individual clips.

It is the interest of many researches in the field to synthesize new streams
of motion from previously acquired data and, therefore, be able to create
new and more complex motions from previously acquired data.

Motion synthesis strategies include constructing models of human motion
[6, 7], interpolating motion to create new sequences [8] and reordering motion
clips employing a motion graph.

In this course, we studied motion synthesis from previously acquired data
based on motion graphs. In the next section, we discuss the basic concepts
and our implementation of the work of Kovar et al. [2].

4.1 Motion Graphs

In [2], a motion graph is created in order to encapsulate connections among
a database. In this graph, edges correspond to motion clips (sequence of
frames) and nodes to choice points (specific frames) connecting these clips.
After selecting the similar frames, or windows of frames, and creating the
graph connections, a walk along the graph allows us to re-assemble the cap-
tured clips, creating new motion.

Algorithms from graph theory and AI planning can be used to synthesize
a desired motion by extracting a graph walk that satisfies certain properties.
It is not within the scope of this course to study such methods. Instead, we

11

implemented the framework responsible for constructing the motion graph
and synthesized new motion by performing random graph walks. Future
directions of this work will definitely include extracting motion from the
motion graph in a fast and efficient way, meeting user specifications.

Figure 4.1 illustrates the construction of a motion graph. Initially we have
two clips of motion from a MoCap database. The resulting graph is the one
shown in Figure 4.1(a), which is disconnected and quite simple. Notice that
it is possible to add nodes in the graph, simply by breaking the initial motion
clips into two or more small clips, as shown in Figure 4.1(b). Nevertheless,
this graph is still disconnected.

(a) Initial graph.

(b) Adding new nodes.

(c) Create greater connectivity.

Figure 4.1: Construction of a motion graph.

To create greater connectivity, we introduce transition clips, as shown in
Figure 4.1(c). Notice that these new edges also represent clips of motion
which have to be synthesized by the technique. Therefore in order to create
these new edges we first have to select the nodes which can be efficiently
connected and then create the motion clips to which the transition edges will
correspond.

12

Following the ideas proposed in [2], we select the nodes which are suffi-
ciently similar so that straightforward blending is almost certain to provide
valid transitions and use a similarity norm that takes into account a sequence
of frames and a point cloud driven by the skeleton .

As in the BVH file, a motion frame is fully described by the position and
orientation of the root node and the rotation of the other joints. However,
an attempt to use this information to calculate similarity between frames
will be highly unsuccessful because some of these parameters have a much
greater overall effect on the characters position than others (for example, a
knee rotation is usually much more significant than a wrist rotation). In
addition, it is quite hard to set fixed weights that work well in all cases, since
the effect of a joint rotation on the shape of the body depends on the current
configuration of the body.

(a) Similar sequence of frames.

(b) Added conection.

(c) Resulting graph.

Figure 4.2: Addition of a transition edge.

To solve this problem, we use a point cloud, which describe the skeleton
pose (ideally this point cloud is a downsampling of the mesh defining the
character) and vector distance norm. It is important to notice that a motion
is fundamentally unchanged if we translate it along the floor plane or rotate
it about the vertical axis. Therefore, before comparing the distance between
two point clouds we apply a rigid 2D transform to the second point cloud

13

that sets it at the optimal position so that weighted sum of squared distances
is minimal.

In addition, it is important to consider not only the current position but
also derivative information, such as velocity and acceleration. We incorporate
this information to the similarity metric by using a window of frames. This
also helps the blending procedure. An example is shown in Figure 4.2. The
similarity metric selects the two sequences of frames as shown in Figure
4.2(a). Therefore we can add an edge that connects the beginning of first
sequence of frames to the end of the second one, shown in Figure 4.2(b). The
resulting motion associated to this transition edge is created by blending the
two sequences of frames.

Finally, after the edges are created, we prune the graph by computing the
strongly connected components (SCCs) . We use only the largest SCC so as
to guarantee that there are no dead ends, and therefore we can synthesize
the motion indefinitely.

The user interface was developed in C++ using QT toolkit. We also im-
prevented a BVH file parser and a player that allows us to compare captured
to rendered motion. As shown in Figure 4.3, the interface shows where each
part of the rendered motion comes from. The graph transitions (blended mo-
tions) are represented in black and the original motion clips in an increasing
saturation scale of color.

14

Figure 4.3: User interface that was implemented.

15

Chapter 5

Discussions and Future Work

During this course we studied capture, representation, editing, and synthe-
sis of articulated body motion. We started by understating the acquisition
procedure and building a motion database and then went on to study and
implement algorithms that enable motion capture data to be edited and syn-
thesized. We also developed an application for parsing a BVH file and playing
a motion.

With this, we have set up the basic principles with which to work with
character animation from MoCap data. It is our interest to further investigate
the area and eventually contribute to a couple of problems in this field. In
the next section we will present the future direction of our study. We will
first discuss the problems which we consider to be intrinsic to the application
of motion captured data to character animation and, finally, present a couple
of ideas for future research in this field.

5.1 Future Directions

5.1.1 Intrinsic MoCap Problems

There were a couple of problems that are intrinsic to the application of motion
capture data to character animation. Though it was not withing the scope
of this course to study such problems, in the future it will be interesting to
take these points into consideration.

First, there is the concern of mapping a motion to a 3D character. A
character has limbs, muscles and other body features that must be altered

16

during the motion in order to allow a realistic rendering of the animation.
Therefore, in order to create an animated character it is necessary to specify
its internal skeletal structure (a process referred to as rigging) and to asso-
ciate each bone in the skeleton with some portion of the character’s visual
representation (skinning).

In addition, there is the problem of retargetting [9]. In many applications,
it may be important to apply a motion created by one articulated figure to
another figure with identical structure (connectivity of the limbs, types of
joints, number of degrees of freedom) but different segment lengths. For
example, it an animator may want to map the movements of a tall slim
woman to a short fat woman, of an adult to a child, of a man to a woman,
or of a teenager to an old lady. In this scenario, it is important to guarantee
that the adaptation preserves important aspects of the motion and avoids
adding additional artifacts.

A second step would be to adapt the motion to environment. In most
cases, MoCap is done in a small studios and on a flat surface. However,
the animated 3D character should be able to interact with highly complex
scenes. Therefore, MoCap data has to be edited in order to overcome spatial
constraints and permit mapping to computer generated environments with
may have uneven terrain and obstacles.

Finally, there is the problem of removing artifacts introduced during mo-
tion processing. As we have previously mentioned, the raw motion data itself
is rarely used. Rather, it is first fit onto a skeleton and then edited to sat-
isfy the particular demands of the animation. This process often introduce
artifacts into the motion, which should be eliminated in order for the mo-
tion to appear realistic and to fit the animator’s specifications. There are
many methods to post process the motion data in order to guarantee that
it preserves a certain number of constraints, most of which solve an inverse
kinematics problems.

5.1.2 Brainstorm of Ideas

An important aspect of MoCap is that it requires a very expensive set up:
the studio must be have several calibrated cameras and actors must where a
special outfit with carefully positioned retro-reflexive markers. To make this
technology useful in everyday applications (for example to control players in
computer games) it is important to construct a low cost system which only
requires a small number of cameras and markers.

17

This is done in [10]. Their approach is to make use of a large database of
pre-recorded human motion and use it to complete the information given by
a small set of markers (6-9 markers captured by 2 cameras). The system uses
a small number control points (given by the few markers) and the motion
database to construct a series of local models which are used to reconstruct
the character’s pose.

A different direction is to study the combination of locomotion and ac-
tion. It is usually possible split and combine motion of the upper and lower
part of the human body. For example, a character can carry a box or wave
independent of whether it is walking, running or standing still. Nevertheless
motions of the upper and lower body can be highly correlated and therefore,
splicing techniques should consider not only physical needs such as balance
preservation but also properties associated with stylistic form of human mo-
tion. An interesting work that addresses this problem is [11].

Finally, it would be interesting to consider the rhythmic patterns of mo-
tions. An intriguing work in this area is [12], which presents a novel scheme
for synthesizing a new motion from unlabeled exampled motions while pre-
serving their rhythmic pattern.

18

Bibliography

[1] Jue Wang, Steven M. Drucker, Maneesh Agrawala, and Michael F. Co-
hen. The cartoon animation filter. In SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Papers, pages 1169–1173, New York, NY, USA, 2006.
ACM.

[2] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, pages 473–482, New York,
NY, USA, 2002. ACM.

[3] Andrew Witkin and Zoran Popovic. Motion warping. In SIGGRAPH
’95: Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, pages 105–108, New York, NY, USA, 1995.
ACM.

[4] Armin Bruderlin and Lance Williams. Motion signal processing. In SIG-
GRAPH ’95: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 97–104, New York, NY, USA,
1995. ACM.

[5] John Lasseter. Principles of traditional animation applied to 3d com-
puter animation. In SIGGRAPH ’87: Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages 35–
44, New York, NY, USA, 1987. ACM.

[6] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion texture: a two-
level statistical model for character motion synthesis. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, pages 465–472, New York, NY, USA, 2002.
ACM.

19

[7] Matthew Brand and Aaron Hertzmann. Style machines. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 183–192, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[8] Lucas Kovar and Michael Gleicher. Automated extraction and parame-
terization of motions in large data sets. ACM Trans. Graph., 23(3):559–
568, 2004.

[9] Michael Gleicher. Retargetting motion to new characters. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 33–42, New York, NY, USA,
1998. ACM.

[10] Jinxiang Chai and Jessica K. Hodgins. Performance animation from
low-dimensional control signals. ACM Trans. Graph., 24(3):686–696,
2005.

[11] Rachel Heck, Lucas Kovar, and Michael Gleicher. Splicing upper-body
actions with locomotion.

[12] Tae-hoon Kim, Sang Il Park, and Sung Yong Shin. Rhythmic-motion
synthesis based on motion-beat analysis. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 392–401, New York, NY, USA, 2003.
ACM.

20

