
Rotations and Interpolations

Technical Report

Adriana Schulz

Instructor: Luiz Velho

Rio de Janeiro, June 6, 2010

Contents

1 Overview 2

2 Technical Backround 3
2.1 Rotation Group . 3
2.2 Rotation Representations . 5

2.2.1 Euler angles . 5
2.2.2 Rotation Matrices . 5
2.2.3 Quaternions . 5

2.3 Interpolating Rotations . 8
2.3.1 SLERP . 8

3 Matlab Toolbox 10
3.1 Description . 10
3.2 Considerations . 11

3.2.1 Magnitude . 11
3.2.2 Data Representations 12

4 C++ Library 13
4.1 Description . 13

4.1.1 Euler Angles . 13
4.1.2 Rotation Matrices . 14
4.1.3 Quaternions . 14

References 15

1

Chapter 1

Overview

In this technical report we will discuss the different ways of representing
rotations in the 3D-space. We will introduce the three most popular rep-
resentations (Euler angles, rotation matrices and quaternions) and discuss
rotation interpolation.

We will also describe the rotation package that was implemented both in
Matlab and in C++.

2

Chapter 2

Technical Backround

2.1 Rotation Group

The group which represents all possible rotations is SO(3), which is the
special orthogonal group in R3, i.e, the group of all orthogonal transforms
which are positive. Notice that this set is isomorphic to the set of all 3 ×
3 orthogonal matrices with positive determinants. SO(3) is a group with
multiplication, which guaranties that when two rotations are combined, the
result is still a valuable rotation.

To prove that the set of 3× 3 positive orthogonal matrices and the set of
all possible rotations in R3 are equivalent, we will first consider a simplified
version of Euler’s Theorem.

Theorem 1 Let A be a positive ortogonal operator in R3. Then there exists
an orthogonal basis E reletive to which the matrix of A can be writen as: 1 0 0

0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


For the demonstration, see Theorem 14.3 [1].

Theorem 1 guaranties that every element of SO(3) represents a rotation
of θ around the axis that is defined by the first element of the orthogo-
nal basis E. On the other hand, rotations preserves length (isometry) and
orientation. Every linear transformation that preserves inner products is rep-
resented by an orthogonal matrix (see Theorem 14.1 [1]). Moreover, a matrix

3

will preserve or reverse orientation according to whether the determinant of
the matrix is positive or negative (proper or improper matrices). Therefore
rotations are necessarily represented by positive orthogonal matrices.

We can justify the preservation of orientation by a continuity argument.
If S and S̃ are two coordinate systems, where S̃ can be obtained from S by
a continuous rigid motion of the coordinate axes, then the determinant of
the matrix associated with the coordinate systems cannot change its value
discontinuously.

It is important to point out that the fundamental system is arbitrary;
it can be right–handed or left–handed. Nevertheless, consistency is funda-
mental. We have chosen to use the right-hand coordinate system (see Figure
2.1) in all functions implemented during this work (to be consistent with the
BVH file description).

Figure 2.1: The right-handed coordinate system.

It is interesting to notice that SO(3) is compact. In fact, it is limited
because the columns of a matrix in SO(3) have norm equal to one. Addi-
tionally, it is closed because it is the intersection of two closed sets: the sets
of matrices with determinant equal to one and the set of orthogonal matrices
(which are both closed because they are preimages of closed sets (1 and I)
by continuous functions).

Another important aspect to observe is that the space of rotations has
three dimensions: two degrees of freedom to describe the rotation axis and
one for the rotation angle.

4

2.2 Rotation Representations

There are several different ways to represent rotations. In this technical
report we will study the three most important representations for computer
graphics: Euler angles, rotation matrices and quaternions.

2.2.1 Euler angles

Euler angles take into account the fact that rotations have three degrees
of freedom and describe them by three angles θx, θy, θz, where each angle
determines the rotation around each of the canonical axis.

Though this approach is quite efficient and largely used in computer
graphics, it has a major drawback: gimbal lock. Gimbal lock is the loss
of a degree of freedom with Euler angles, which occurs when two rotation
axis align1. This phenomenon occurs because, as we discussed in the previ-
ous section, SO(3) is compact and, therefore, any parametrization from an
open set on R3 will necessarily involve singularities.

2.2.2 Rotation Matrices

As seen in section 2.1, rotations can be fully determined by a positive or-
thogonal matrix. Therefore it is natural to use rotation matrices to represent
them. One of the drawbacks of this approach, however, is that a 3 × 3 ma-
trices has nine degrees of freedom and therefore several constraints need to
be satisfied in order to guarantee that a given matrix represents a rotation.
In addition, when using rotation matrices, it necessary to store three times
the necessary amount of data.

2.2.3 Quaternions

Quaternions are a very efficient way to represent rotations because they define
an angle and a rotation axis.

It is not the intention of this work to fully demonstrate the properties
of quaternions. Instead, we will introduce basic quaternion arithmetic and
describe how they can be used to determine rotations.

1We recomend http://www.youtube.com/watch?v=zc8b2Jo7mno for an illustration of
the phenomenon.

5

Quaternion Arithmetic

A quaternion q ∈ R4 can be defined as q = w + xi+ yj + zk, where

· i j k

i −1 k −j
j −k −1 i
k j −i −1

Or equivilentely, q = q0 + q, where q0 is a scalar and q is a vector in R3.
Quarternion addition and multiplications are defined as follows:

p+ q = (wp + wq) + (xp + xq)i+ (yp + yq)j + (zp + zq)k
p · q = (p0q0 + p · q) + (p0q + q0p + p× q)

The set of quaternions, along with the operations of addition and mul-
tiplication, form a non-commutative2 division ring, where the multiplicative
inversion is defined as follows:

q−1 =
q0 − q

‖q‖

where,
‖q‖ =

√
w2 + x2 + y2 + z2

Quaternion Rotation

Given a quaternion q, we represent a rotation as follows. If v ∈ R3, let
v = 0 + v, then

(2.1) Rq(v) = qvq−1

Notice that Rq(v) is also a quaternion with scalar value equal to zero,

R(qvq−1) = (qvq−1)(qvq−1)−1

2

= q(v+v−1)q−1

2

= qR(v)q−1 = 0

where R(q) is the real part of q. And, therefore, Rq defines a function
R3 → R3.

2It is important to emphasize that the multiplication of quaternions is not commutative!

6

It is also simple to demonstrate that Rq is linear, orthogonal, and positive
(see [2]), and, hence, we can conclude that Rq defines a rotation in R3.

Unitary quaternions are quaternions with norm equal to one. Notice that
if q is not unitary, Rq = Rq̄, where q̄ = q/‖q‖ (see Equation 2.1). Therefore,
as far as rotations are concerned, we can always consider q unitary.

Geometric Interpretaion

If q is unitary, then
q2

0 + |q|2 = 1

This implies that there exists θ, such that −π < θ < π and{
q2

0 = cos2θ

|q|2 = sin2θ

And, therefore, if u = q/|q|, then

q = cosθ + usenθ

It is possible to prove that q defines a rotation of 2θ around the u axis.
We will not demonstrate this here (see [2]), however, we will illustrate the
consistency o this result.

Notice that, since q is unitary, q−1 = cosθ − usinθ. Therefore q−1 =
cos(−θ) + usin(−θ), i.e., the inverse of the rotation of 2θ is the rotation of
−2θ.

We can also observe that, if u = 0 + u:

Ru(u) = (cosθ + usenθ)u(cosθ − usenθ)
= cos2θu− sin2θu3

= (cos2θ + sin2θ)u = u

i.e., rotating a point on the rotation axis does not affect it 3.

3Notice that, if if q is unitary and q = q0 + q is such that q0 = 0, then

q2 = −q · q+ q× q
= −|q|2 = −1

7

2.3 Interpolating Rotations

In several applications in computer graphics it is important to interpolate
rotations. For example, a position of an articulate body in usually determined
by the rotations of each joint and in keyframe animations are created by
interpolating between these rotations.

Rotations represented by matrices are very difficult to be interpolated
because simple linear combinations of the coefficients often result in matrices
that are not positive orthogonal and therefore do not specify a valid rotation.

Euler Angles are more effective for this operation and are largely used
for keyframe animation. The main drawback of this approach is that the
interpolated frames will not necessarily be the most efficient path between
keyframes since Euler angles as subjected to gimbal lock problems (when two
axis align). To get around gimbal problems, we can use different parametriza-
tions (changing the order of the rotation axes). Nevertheless, changing be-
tween coordinate systems is difficult and computationally expensive.

The most efficient way of interpolating rotations is by means of quater-
nions. In order do understand quaternion interpolation, we will first indro-
duce the relationship between quaternions and exponentials.

2.3.1 SLERP

Let q be a unitary quaternion, q = cosθ + usenθ. From the Taylor series we
get

eθu = cosθ + usinθ = q

and, therefore, log q = θu.
Notice that,

qt = et log q = etθu = cos(tθ) + usin(tθ)

Therefore, if c(t),= qt, where t varies between 0 and 1, then c(t) is a
linear interpolation between p = 1 + 0i+ 0j + 0k and q.

Notice that the exponential is a parametrization of SO(3) e : R3 → S3 and
that the interpolation c(t) defines a geodesic on S3. A geodesic is a desirable
property because it guarantees that all inbetween values are valid rotations
(on the great-circle) and the interpolation is linear (c′(t) is constant).

The Spherical Linear Interpolation (SLERP) is an extension of the pre-
viously described interpolation and is defined as follows:

8

slerp(p, q, t) = p(p−1q)t

where, p and q are quaternions and t is a parameter ranging from 0 to 1. Or,
alternitively,

slerp(p, q, t) =
sin((1− t)θ)

sin(θ)
p+

sin(tθ)

sin(θ)
q

where θ is the angle between p and q (cosθ = p · q).
This interpolation is a geodesic that connects the mapping of the two

points q and p on S3.
Notice that SLERP only allows interpolating between two rotations. In

order to consider more than two kewpoint it is necessary to consider different
and more complex interpolations, however, will not address this issue in this
work.

9

Chapter 3

Matlab Toolbox

We developed a couple of toolbox on Matlab that operates with quaternions
and converts from quaternions to Euler angles and rotation matrices.

3.1 Description

The functions that implement operation with quaternions are:

• qi = Qinv(q)

returns a quaternion qi, which is the inverse of the quaterinon q.

• q = Qmulti(q1, q2)

returns a quaternion q, which is the result of the multiplication of
quaternions q1 and q2.

• qt = Qpow (q, t)

returns a quaternion qt, which is the result of quaternions q raised to
the power of t.

• Pq = Qrotation (q, P)

returns a 3D vector Pq, which is the result of rotating the point P (also
a 3D vector) by the rotation represented by the quaternions q.

• q = Qslerp (q1, q2, t)

returns a quaternion q, which is the result of the Spherical Linear Inter-
polation (SLERP) of quaternions q1 and q2 with paramenter t, which
varies from 0 to 1.

10

The functions that implement convertions between rotation representa-
tions are:

• q = euler2quat(e)

returns a quaternion q, which represents the same rotation given by
the Euler angles e.

• m = euler2mat(e)

returns a rotation matrix m, which represents the same rotation given
by the Euler angles e.

• q = mat2quat(m)

returns a quaternion q, which represents the same rotation given by
the rotation matrix m.

• e = mat2euler(m)

returns the Euler angles e, which represents the same rotation given
by the rotation matrix m.

• e = quat2euler(q)

returns the Euler angles e, which represents the same rotation given
by the quaternion q.

• m = quat2mat(q)

returns a rotation matrix m, which represents the same rotation given
by the quaternion q.

3.2 Considerations

3.2.1 Magnitude

In computer graphics, we usually consider unitary quaternions (magnitude
equals one). This simplifies calculations and has no negative effects since any
scalar multiple of a quaternion results in the same rotation (see Equation
2.1). Therefore, in this tookbox, all functions were implemented considering
unitary quaternions.

11

3.2.2 Data Representations

Rotation matrices are naturally represented as a 3 × 3 array. We represent
Euler angles as a 3D vector, where the fist element is the rotation around
the Z axis, the second element is the rotation around the X axis, and the
third element is the rotation around the Y axis. A vector was also used to
represent the quaternions q = w+xi+yj+zk. The first element represents
x, the second y, the third z, and the forth w.

12

Chapter 4

C++ Library

We also developed a Library in C++ that implements the functions presented
in the previous section.

4.1 Description

The Library constists two header files (with corerspondant sources): linearAlgebra.h
and rotations.h. Examples of its use in given in the file main.cpp.

The file linearAlgebra.h contains two classes vector3f and matrix9f,
which specify and implement the basic alebraic operations of a 3D vector
and a 3× 3 matrix, respectively1.

In the file rotation.h the three rotations representation classes are spec-
ified: Euler, RMatrix and Quaternion.

4.1.1 Euler Angles

Below is the discription of the class Euler, which inherits from vector3f

and describes rotations represented by Euler angles.

class Euler : public vector3f

{

public:

Euler();

1The implementation was based on the corresponding classes from the free software
Bioviewer.

13

Euler(float x, float y, float z);

friend Quaternion euler2quat (const Euler &eu);

friend RMatrix euler2rmat (const Euler &eu);

};

The methods euler2quat and euler2rmat implement the conversion
from Euler angles to quaternions and rotation matrices, respectivery.

4.1.2 Rotation Matrices

Below is the discription of the class RMatrix, which inherits from matrix9f

and describes rotations represented by rotation matrices.

class RMatrix: public matrix9f

{

public:

friend Euler rmat2euler (const RMatrix &m);

friend Quaternion rmat2quat (const RMatrix &m);

};

The methods rmat2euler and rmat2quat implement the conversion from
rotation matrices to Euler angles and quaternions, respectivery.

4.1.3 Quaternions

Below is the discription of the class Quaternion, which describes rotations
represented by quaternions.

class Quaternion

{

public:

vector3f vector;

float scalar;

Quaternion();

Quaternion(float x, float y, float z, float w);

14

Quaternion pow(float t);

Quaternion inv() const;

vector3f rot(vector3f P);

friend Quaternion operator+ (const Quaternion &q1, const Quaternion &q2);

friend Quaternion operator* (const Quaternion &q1, const Quaternion &q2);

friend Quaternion slerp (const Quaternion &q1, const Quaternion &q2, float t);

friend Euler quat2euler (const Quaternion &q);

friend RMatrix quat2rmat (const Quaternion &q);

};

Quaternions are represented by a scalar value (scalar) and a 3D vector
(vector).

We implemented the basic alebraic operations of quaternions. The meth-
ods inv and pow implement quaternion invertion and the raise of a quartion
by a power of t, respectively. We also implemented opertor overload to allow
sum and multiplication of quaternions.

We also impemeted rotaions and interpolations of quaternions. The
method rot returns a 3D vector, which is the result of rotating the point
P by the rotation represented by the quaternions. The method slerp re-
turns a quaternion q, which is the result of the Spherical Linear Interpolation
(SLERP) of quaternions q1 and q2 with paramenter t, which varies from 0
to 1.

Finally, the methods quat2euler and quat2rmat implement the conver-
sion from quaternions to Euler angles and rotation matrices, respectively.

15

Bibliography

[1] Elon Lages Lima. Álgebra Linear. IMPA, 2008.

[2] Jonas Gomes and Luiz Velho. Fundamentos da Computacao Grafica.
IMPA, 2003.

[3] Rick Parent. Computer animation: algorithms and techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[4] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton University
Press, Princeton, New Jersey, USA, 1999.

[5] L. Mirsky. An Introduction to Linear Algebra. Clarendon Press, Oxford,
1995.

[6] Ken Shoemake. Animating rotation with quaternion curves. SIGGRAPH
Comput. Graph., 19(3):245–254, 1985.

16

