SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

Adrien Bernhardt (INRIA) André Maximo (IMPA) Luiz Velho (IMPA) Houssam Hnaidi (U. Lyon 1) Marie-Paule Cani (INRIA)

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

why editing is important?

modeling tool features

Venus sculpture

3D modeling example

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

why editing is important?

simple way

modeling tool features

3D modeling example

Venus sculpture

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

why editing is difficult?

vertex-by-vertex modeling can be tedious

http://www.packtpub.com/article/modeling-furniture-in-blender

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

inspiration

FiberMesh

modeling using 3D curves

easy to interact

automatic generation curve \rightarrow surface geometry

A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, "FiberMesh: Designing Freeform Surfaces with 3D Curves," in *ACM SIGGRAPH* 2007 papers, ser. SIGGRAPH '07. New York, NY, USA: ACM, 2007. [Online]. Available: http://doi.acm.org/10.1145/1275808.1276429

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

and what about terrains?

Artistic creation

virtual

3D model of Mars

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

terrain editing can be difficult too!

vertex-by-vertex peaks

Modeling of mountains

add noise

http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Landscape_Modeling_I:_Basic_Terrain

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

inspiration

modeling with curves

Terrain Sketching

J. Gain, P. Marais, and W. Straßer, "Terrain Sketching," in *Proceedings* of the Symposium on Interactive 3D Graphics and Games, ser. I3D '09. New York, NY, USA: ACM, 2009, pp. 31–38. [Online]. Available: http://doi.acm.org/10.1145/1507149.1507155

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

real-time terrain modeling

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

problem statement

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

problem statement

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

problem statement

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

problem statement

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

overview

- Modeling by sketch
- 2 Light and *adaptive* control of the terrain on the CPU
- 3 Terrain *generation* on the GPU
- 4 Terrain *rendering* reducing CPU-GPU communication
- 5 Multiresolution *texture* heightmap

quadtree

multigrid solver

tessellation shaders

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

sketching

The canvas is the viewing plane

the user can navigate over the terrain stopping at any position

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

sketching

The canvas is the viewing plane Click or touch starts drawing primitives mountain primitive

the user can navigate over the terrain stopping at any position

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

sketching

The canvas is the viewing plane Click or touch starts drawing primitives First and last points define the drawing depth of the primitive mountain primitive

the user can navigate over the terrain stopping at any position

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

sketching

the user can change the primitive draw mode

Other primitives are possible

With a different terrain perspective in this example

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

cpu-gpu coupled computation

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

cpu-gpu coupled computation

The GPU

offers massive parallelism

tessellate the terrain *triangles*

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

cpu-gpu coupled computation

The GPU

offers massive parallelism

cpu-gpu coupled computation

The GPU

offers massive parallelism

tessellate the terrain *triangles*

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

cpu-gpu coupled computation

the terrain is in different resolutions in each unit

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

André Maximo August, 2011

favors balancing

the quadtree data structure

the quadtree represents the terrain in the CPU

Controls the quad patches to be sent to the GPU

Each quad patch corresponds to a quadtree leaf node

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

the multigrid solver

Solver generates the terrain: $curve \rightarrow heightmap$

http://liris.enrs.fr/publis/?id=4974

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

the multigrid solver

The terrain in multiresolution is stored in a mipmap texture

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

results & conclusions

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

results

video

Real-time Terrain Modeling using CPU-GPU Coupled Computation

SIBGRAPI paper id: 86743

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

results

images <>d 🖉 🖉 🖉 🖉 Terrain example generated by our tool < > 🗅 💿 j🔐 🚳 🔳 🛐

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

results

timings

Terrain Size	Iterations	Creation (ms)	Tess. (ms)	GPU (MB)
512×512	45	23	4.8	16.9
$1K \times 1K$	49	28	5.2	57.3
$2K \times 2K$	53	35	5.9	141.8
$4K \times 4K$	56	44	6.7	716.7

Real-time: 50 ms for a 16 MiP heightmap

TABLE ITERRAIN MODELING COMPUTATIONAL TIMINGS AND GPU MEMORY
CONSUMPTION AT DIFFERENT RESOLUTIONS.

Two orders of magnitude faster than Gain et al.'s approach

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

conclusions

summary

Real-time terrain modeling tool

Drawing and visualization of terrain primitives at the same time

CPU-GPU coupled computation

Balanced level-of-detail visualization

Natural and intuitive interaction

Pull and push the terrain surface by sketching

Use both camera and click events for interaction

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

conclusions

future work

The multigrid solver can be further improved

Initial iterations can be done in the CPU

Explore texture filtering in the tessellation evaluation shader

Anisotropic filtering for geometry

Normal and fractal texture painting

More realistic results

Extend the idea to general surfaces

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation

thank you

Adrien Bernhardt1Andre Maximo2Luiz Velho2Houssam Hnaidi3Marie-Paulie Cani1adrien.bernhardt@inrialpes.frandmax@impa.brlvelho@impa.brhoussam.hnaidi@liris.cnrs.frmarie-paule.cani@inrialpes.fr

¹INRIA, Grenoble Univ., France ²IMPA, Brazil ³LIRIS, CNRS, Univ. Lyon 1, France

http://www-evasion.imag.fr/Membres/Adrien.Bernhardt

SIBGRAPI

Real-time Terrain Modeling using CPU-GPU Coupled Computation