
Ricardo Marroquim
André Maximo
Ricardo Farias

Claudio Esperança

GPU-Based Cell Projection
for Interactive Volume

Rendering

Volume Rendering : Acquisition

● 3D scalar fields:
– Density, heat, velocity, etc...

Volume Rendering : Mesh

● Scalar field -> Tetrahedral mesh
● Compose slices in hexagons (4 points of front

slice and 4 of back slice)
● Each hexagon can be subdivided in 6 or 5 tets

without inserting new points
● Unstructured grids

Transfer Function

● Maps scalar value to chromacity and opacity
values

● Each scalar ranges contains different features

Ray Integration

● Volume Rendering Integration:

I D= I 0 e
−∫

0

l

 t dt

∫
0

l

k s se
−∫

s

l

 t dt

ds

Projected Tetrahedra (PT) :
Overview

● Introduced by Shirley & Tuchman (1990)
– Projects tetrahedra to screen space
– Decompose tetrahedra into triangles
– Find color and opacity values for the triangles

vertices
– Render in visibility order

Projected Tetrahedra (PT)

● Sort elements in visibility order

Projected Tetrahedra (PT)

● Project tetrahedra to screen space

Projected Tetrahedra (PT)

● Determine projection class of each tetrahedron

Projected Tetrahedra (PT)

● Compute tetrahedron's thickness and scalar
value at ray's entry and exit point

Projected Tetrahedra (PT)

● Decompose projected tetrahedra in triangles

Projected Tetrahedra (PT)

v2rgb=
C rgbS f C rgbS b

2

=1−e− l≈ l

● Color and opacity at thick vertex:

Projected Tetrahedra (PT)

● Compose fragments

I new=∗C rgb1−∗I old

GPU Implementation

● Based on Brian Wylie (2002)
● Maps the triangles to GPU (Basis Graph)
● Better integration methods instead of average

colors
● GPGPU (General Purpose Computation on

GPU) techniques

Two steps approach

Compute
{Sf, Sb,
thickness}

per tetrahedron

Sort
tetrahedra

and prepare
triangles

Integrate Ray and
Render

GPU GPU

● Two GPU passes

CPU

First Shader Overview

First Shader : Textures

● Render tetrahedral texture
– Same size as viewport
– Maps one texel to one

fragment
– One fragment shader pass

for each tetrahedron
● 32 bits per component

First Shader : Retrieve Vertices

● Retrieve vertices from
texture

● Project to screen space
– Still no information about

vertices arrangement

First Shader : Determine Projection
Classes

● 4 Cross Product Tests
– Covers all possible projections

First Shader : Classification Table

● Ternary Truth Table
– Three test results : 0, 1, 2
– 4 Vertices in correct order (rows)
– 34 = 81 rows
– Row id = (test1* 27) + (tests2 * 9) + (tests3 * 3) + (tests4* 1)

– Actually, there are only 50 cases
● Maximum two tests = 1 per tetrahedron
● Else degenerated tet -> discard

First Shader : Classification Table

Id Test 1 Test 2 Test 3 Test 4
0 0 0 0 0 0 3 2 1
1 0 0 0 1 0 3 2 1
2 0 0 0 2 0 3 2 1
3 0 0 1 0 1 0 3 2

V
0

V
1

V
2

V
3

First Shader : Map to Basis Graph

● Map projected vertices
to basis graph
– Compute intersection

vertex with same
vectors for every class

First Shader : Compute Intersection
Vertex

● Compute thick vertex in basis graph
– Intersection between segments v

0
'v

2
'

and v
1
'v

3
'

– Line coefficients:
● (front) v

i
 = v

0
' + u * (v

2
' – v

0
')

● (back) v
i
 = v

1
' + t *(v

3
' – v

1
')

– Compute v
i
, Sf, Sb

– Thickness l
● Compute difference in z between front and

back intersections vertices

First Shader : Render to Texture

● Capture fragment shader using FBO (Frame
Buffer Object)
– Instead of rendering to screen, render to a texture

● MRT (Multiple Rendering Targets)
– Render to two different textures

Preparing for Second Shader

● Before executing second shader:
– Sort tetrahedra (merge sort using centroids)
– Setup Vertex and Color Arrays

● Primitives are passed to second shader as triangle fans
● For each class the fan has a specific number of triangles

Preparing for Second Shader :
Sorting

● Centroids are computed on first fragment shader
● Merge sort O(n log n) when model is still
● Simple layer sorting during rotations O (n)

– Distribute tetrahedra in slabs perpendicular to the
viewing vector

– Render slabs back to front
– Tetrahedra inside slabs remain unsorted

Preparing for Second Shader :
Arrays Structure

● Vertex and Color Arrays
– 5 vertices per Tet (four vertices + thick vertex)

● Indices and Count Arrays
– Order and number of vertices in triangle fan

Preparing for Second Shader :
Arrays Structure

● Array structures for glMultiDrawElements:

Second Shader : Vertices
Interpolation

● Except for thick vertex, all others are rendered
with original values of the color array

Second Shader : Fragment Color

● Linear interpolation of vertices scalar and
thickness values

● Average Scalar:

Savg=
S f 'S b '

2

Second Shader : Fragment Color
and Composition

● Transfer Function Texture Look up
– 1D Texture (255 values)
– Each texel contains RGBA values

RGBSavg=tf S avg

 frag=1−e
− l

RGB frag=RGBSavg∗ frag

I new= I old 1− frag RGB frag

Ray Integration

● Volume Rendering Integration:

I D= I 0e
−∫

0

l

 t dt

1−

∫
0

l

k s se
−∫

s

l

 t dt

ds

∗Crgb

● Approximate using average scalar:

I D= I 0e
−l
1
2
b f

1−

1
2
k fk b1−e

−l
1
2
b f

∗Crgb

Pre-Integration
● Introduced by Engel et al. (2001)

– More accurate : Less artifacts
– Compute integration for different Sf, Sb and

thickness values
– Use a 3D texture to store the values : slow access!
– Access the texture during second fragment shader

computation to obtain final color and opacity value
– Problem : creation of the 3D texture is slow!

I D= I 0 e
−∫

0

l

 t dt

1− t3D

∫
0

l

k s se
−∫

s

l

 t dt

ds

RGBt3D

Partial Pre-Integration

● Introduced by Moreland e Angel (2004):
– Compute integration for different Sf, Sb and

thickness values without transfer function
dependency

– Use a 2D texture to store the values (different
resolutions : 512x512 , 1024x1024)

– Access the texture during second fragment shader
to obtain weight of color

– Slower than pre-integration (some computation is
left to the shader)

– Not a problem : creation of the 2D texture is slow,
but is computed once (not pre-computation)

Transfer Function

● Interactive editing:
– Update the transfer function texture each time it

changes
– Only possible using partial pre-integration or

average scalar method
– Pre-integration : time to recompute too high
– Colors use logarithmic scale : smooth transition,

attenuates artifacts

Transfer Function

● Interactive editing:

Transfer Function

● Interactive editing and different color maps:

Results

Blunt Fin

Spx

Oxygen Post

Combustion
Chamber

Results

Fuel
Injection

Brain DTI

Data Set # Vertices # Tets FPS Tets / sec
Spx 1 2.9 K 13 K 95.32 1233.2 K
Blunt 40 K 187 K 11.3 2119.7 K
Comb 47 K 215 K 9.32 2005.4 K
Post 110 K 513 K 4.49 2384.4 K
Spx 2 150 K 828 K 3.04 2526.9 K
Fuel 262 K 1.5 M 1.49 2246.0 K
Brain 950 K 5.5 M 0.46 2560.8 K

Ocean

Results

● Video

Performance Gain

● What makes the difference?
– Use of Vertex Array (OpenGL optimization)
– Use fragment shader for heavy computations

(vertex shader is slower)
– No vertex attributes (reduces CPU—BUS transfers)
– Keep model in GPU texture memory
– Choosing texture formats and types:

● GL_TEXTURE_2D faster than
GL_TEXTURE_RECTANGLE_2D

● GL_TEXTURE_3D : slow access!
– Eliminate heavy computations from shaders (look

up classification table and exponential table for
example)

Quality Gain

● Rendering better images:
– Use 32 bits texture (reducing precision loss)

● Tetrahedral texture
● Vertices texture

– For some textures 8 bits is appropriate and faster,
classification table for example

– Access textures using linear interpolation instead of
nearest value

– Use partial pre-integration instead of average colors

Conclusion

● Implementation of PT algorithm with GPU:
– no major bus transfer overhead : whole model is

stored in texture memory
– low memory usage (no auxiliary data structures) :

20 bytes / tet
– Up to 7 million tetrahedra
– Over 2.0 M Tets/sec
– Interactive transfer function

Future Works I

● Use Vertex Buffer Objects (performace)
– render directly to vertex array, try to eliminate CPU

passage (thick vertex update)
● Illumination model (quality)

– gradients and isocontours (boundary estimation)
● Implement better sorting algorithm (quality &

performance)

Future Works II

● Treat large meshes:
– Remove tetrahedra without information (areas

outside model)
– Merge tetrahedra with same scalar

● Implement ray-casting for comparison:
– No visibility sorting
– More precise computation of thickness and scalar

values
– Auxiliary adjacency data structures (more bytes/tet)

“Making of” Questions? Thank you!

