GPU-Based Cell Projection for Large Structured Data Sets

8 – 11 March, 2007 Barcelona, Spain

André Maximo Ricardo Marroquim Ricardo Farias Claudio Esperança

- Different approaches for Volume Rendering:
 - 3D Texture

- Different approaches for Volume Rendering:
 - 3D Texture

• Mesh

- Different approaches for Volume Rendering:
 - 3D Texture $\rightarrow texels/s$

• Mesh \rightarrow triangles/s

- Graphics card features:
 - GPU Memory
 - CPU GPU bus bandwidth

Proposal

- Common solution →
 3D Texture
- Large data sets
- Mesh → Cell Projection
- GPU

Volunit

- Split 1 hexahedron into 5 tetrahedra
 - 1 hexahedron $\rightarrow 8$ voxels $\rightarrow volunit$

Algorithm Overview

- Project the *volunit* \rightarrow PT [Shirley and Tuchman 1990]
- Sorting $\rightarrow O(1)$
- Create Vertex Array Data Structure → *Volunit*
- Render the volume \rightarrow GPU

Basis Hexahedron Projection

- Recent implementation of PT [Marroquim et al. 2006]
 - Basis projection class
 - Basis projected vertices coordinates
 - Basis thick vertex coordinates

- Basis intersection parameters for computing s_f and s_b
- Basis rendering order

Traversal Order

- Cell Projection worst disadvantage → Sorting
- Regular data → Traversal
 Order

Allocate Vertex Array

- Optimizing with Vertex Array
- Setup the arrays for each *volunit*

GPU Rendering pipeline

- Each *volunit* is sent as 5 triangle fans
- Basis hexahedron data are stored as uniform variables
- Auxiliary textures are stored on GPU memory

Volume Interaction

• Interactive transfer function editing

• Volume clipping

Video

Results

Results

- High tetrahedra/s performance
- No GPU memory used
- More time spent on GPU than CPU

Table 1: Average frames and tetrahedra per second.

Data set	# Verts	# Tet	fps	M tet/s
Fuel	262 K	1.2 M	70.78	88.5/5.99
ToothC	1 M	5 M	1.22	13.1/6.30
Tooth	10 M	52 M	0.24	12.7/6.61
Foot	16 M	83 M	0.81	67.7/6.23
Skull	16 M	83 M	0.61	51.7/6.25
Aneurism	16 M	83 M	2.42	201/5.35

Table 2: Setup and render times.

Data set	Setup	Render	% Total
Fuel	0.005 s	0.009 s	64.28~%
Tooth	1.377 s	6.484 s	82.47 %
Foot	4.556 s	9.074 s	66.57~%
Skull	4.606 s	8.593 s	65.10 %
Aneurism	0.199 s	0.210 s	51.34~%

Results

- High tetrahedra/s performance
- No GPU memory used
- More time spent on GPU than CPU

Table 1: Average frames and tetrahedra per second.

Data set	# Verts	# Tet	fps	M tet/s
Fuel	262 K	1.2 M	70.78	88.5/5.99
ToothC	1 M	5 M	1.22	13.1/6.30
Tooth	10 M	52 M	0.24	12.7/6.61
Foot	16 M	83 M	0.81	67.7/6.23
Skull	16 M	83 M	0.61	51.7/6.25
Aneurism	16 M	83 M	2.42	201/5.35

Table 2: Setup and render times.

Data set	Setup	Render	% Total
Fuel	0.005 s	0.009 s	64.28~%
Tooth	1.377 s	6.484 s	82.47 %
Foot	4.556 s	9.074 s	66.57~%
Skull	4.606 s	8.593 s	65.10~%
Aneurism	0.199 s	0.210 s	51.34~%

Conclusions

- High tetrahedra/s performance
 Lower than 3D Texture
- More time spent on GPU than CPU

 [↑] closer to the theoretical limit [Roettger and Ertl 2003]

Future Works

- Rendering less primitives
 - Join the 5 tetrahedra (~20 triangles) projected shape in less triangles
 - Project the hexahedron
- Enhance the visualization with a Phong lighting model

GPU-Based Cell Projection for Large Structured Data Sets

Email: andmax@cos.ufrj.br COPPE/UFRJ: http://www.cos.ufrj.br LCG: http://www.lcg.ufrj.br

Thank you!

