
Real-Time Terrain Modeling using
CPU–GPU Coupled Computation

Adrien Bernhardt Andre Maximo Luiz Velho Houssam Hnaidi Marie-Paulie Cani1 12 2 3

INRIA, Grenoble Univ., France IMPA, Brazil LIRIS, CNRS, Univ. Lyon 1, France1 2 3

Sketch-based Terrain Modeling

The majority of procedural editing and feature extraction tools for terrain modeling are based on a top-view interaction.
Although interesting, this approach limits the artistic freedom of the tool. Our modeling system is based on a 3D camera
with a first-person perspective and sketch-based drawing interaction over the moving view plane. This method allows
the user to draw landscape silhouettes at any distance and with more freedom.

Mountain Strokes Plateaux Strokes

Our terrain modeling system allows intuitive and natural interaction through simple sketches drawn over the current camera
viewing plane. The sketches can be created, moved or deleted; effectively changing the terrain. Depending on the desired
primitive to create or modify, the user can move the camera to choose the best view of the terrain. The camera zoom can
also be used to interact with terrain primitives at different scales.

Terrain Primitives as 3D Curves

Moving Strokes Example

adrien.bernhardt@inrialpes.fr marie-paule.cani@inrialpes.frlvelho@impa.brandmax@impa.br houssam.hnaidi@liris.cnrs.fr

Abstract—Motivated by the importance of having real-time feedback in sketch-based modeling tools, we present a framework for terrain edition capable of generating and displaying complex and high-resolution terrains. Our system is efficient and fast
enough to allow the user to see the terrain morphing at the same time the drawing editing occurs. We have two types of editing interactions: the user can draw strokes creating elevations and crevices; and previous strokes can be interactively moved to
different regions of the terrain. One interesting feature of our tool is that terrain primitives can be interactively manipulated similarly to primitives in vector-graphics tools. We achieve realtime performance in both modeling and rendering using a hybrid
CPU–GPU coupled solution. We maintain a coarse version of the terrain geometry in the CPU by using a quadtree, while a fine version is produced in the GPU using tessellation shaders.

Our approach partitions the terrain with a view- and heightmap-dependent quadtree. This lightweight data structure
controls the quadrilateral patches to be rendered, serving two main purposes: it allows a first coarse LOD analysis of
the terrain; and it frees the CPU from the costly task of generating the entire heightmap data.

CPU Quadtree Adaptation

Quad Patches Bounding BoxesQuadtree Data Structure

GPU Tessellation

We employ the GPU to solely generate and maintain the terrain data on its own texture memory. The generation is
accomplished by a fast multigrid solver specifically designed for terrains. The generated data is constantly used in our
approach to morph the original rendering of low-resolution quadtree patches in smooth high-resolution triangles through
the graphics-card tessellation shaders. The tessellator allows for a second fine LOD analysis of the terrain, balancing the
decision between the units. Although the whole data is updated and used by the GPU, the management is done by the CPU.

Minimum Quadtree Refinement Terrain Tessellation

CPU GPU

control

render

MULTIGRID
SOLVER

TESSELLATION
SHADERS

TEXTURE

QUADTREE
DATA STRUCTURE

START/STOP
ITERATIONS

draw

camera

update bounding box

The terrain modeling framework of our tool. While the CPU controls the multigrid solver depending on drawings
and sends terrain patches to be rendered, the GPU generates the terrain in texture memory and tessellates
its own produced heightmap. This setting requires three different data paths: adaptive rendering using a
quadtree (red); solver iterations control (blue); and updating coarse-resolution details on the quadtree (green).

CPU–GPU Coupled Solution

iteration
upsampling

2D constraint texture heightmap result

co
ns

tr
ai

nt
 d

ow
ns

am
pl

in
g

multiscale resolution3D strokes

constraint rasterization

iteration
upsampling

The landscape primitives specified by 3D strokes are converted to constraints through rasterization and stored on a 2D
constraint texture. This texture is downsampled to be used in a solve-then-upsample process, i.e. the multigrid solver,
where it first solves for the small resolutions before extrapolating the solution for finer resolution systems.
The final solution is the heightmap of the terrain in a multiresolution pyramid stored as a mipmap texture.

3D Curves and the Multigrid Solver

The 3D curves before rasterization represent terrain
primitives and are similar to curves in a vector-graphics tool

Modeled Terrain Results

Terrain example generated by our modeling system (north and south views). The blue strokes were drawn to create
mountains and crevices, and the red strokes were drawn to create plateaux in the midst.

References
HNAIDI, H., GUÉRIN, E., AKKOUCHE, S., PEYTAVIE, A., AND
GALIN, E. 2010. Feature based terrain generation using diffusion
equation. Computer Graphics Forum 29, 7 (September).

BERNHARDT, A., MAXIMO, A., VELHO, L., HNAIDI, H., AND
CANI, M. 2011. Real-time Terrain Modeling using CPU-GPU coupled
computation. To appear in Proceedings of SIBGRAPI (August).

We have tested our modeling system with different
heightmap resolutions and number of solver iterations.
Table I presents the terrain creation solver and
tessellation-based rendering timings and GPU
memory consumption for the tested terrain size and
respective number of iterations. The timings are given
using a 1024 × 768 pixel viewport and considering
the camera constantly moving. All timings were
performed in an Intel Core2Quad CPU and an
nVidia 480 GTS GPU using OpenGL 4.1.

